Skrebkov O.V.
1, Kostenko S.S.
1, Smirnov A.L.
11Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Сhernogolovka, Russia
Email: asm@icp.ac.ru
The field of research of vibrational relaxation processes in their interaction with chemical reactions is currently characterized by high activity. This review is based on our work. A vibrational nonequilibrium model of hydrogen oxidation is presented within the framework of a sequential elementary kinetic approach. The central element is to take into account the vibrational nonequilibrium of the HO2 radical as the most important intermediate in the process of chain branching and in the formation of electronically excited particles. The results of shock wave experiments and corresponding calculations for the H2+O2+Ar system at temperatures T<1500 K and pressures p<4 atm are discussed. It is shown that under these conditions, vibrational nonequilibrium is the most important factor determining the mechanism and rate of the process. The analysis of the thermal effect at various stages of the process, the inhibition of the reaction of hydrogen with oxygen by additives of polyatomic gases and the mechanism of formation of an electronically excited OH(A^2Σ+) radical is given. Keywords: chemical kinetics, vibrational relaxation, electronic excitation, shock wave.
- P.V. Marrone, C.E. Treanor. Phys. Fluids, 6, 1215 (1963). DOI: 10.1063/1.1706888
- E.V. Stupochenko, S.A. Losev, A.I. Osipov. Relaksatsionnye protsessy v udarnykh volnakh (Nauka, M., 1965) (in Russian)
- S.A. Losev. Gazodinamicheskie lazery (Nauka, M., 1977 (in Russian)
- V.M. Vasil'ev, S.V. Kulikov, O.V. Skrebkov. PMTF, 4, 13 (1977). (in Russian)
- K. Smith, R. Thomson. Chislennoe modelirovanie gazovykh lazerov (Mir, M., 1981) (in Russian)
- A.S. Bashkin, V.I. Igoshin, A.N. Oraevsky, V.A. Shcheglov. Khimicheskie lazery (Nauka, M., 1982) (in Russian)
- R.C. Brown. Combustion and Flame, 62, 1 (1985). DOI: 10.1016/0010-2180(85)90088-4
- C. Park. Nonequilibrium Hypersonic Aerothermodynamics (Wiley, NY., 1990), Document ID 19910029860
- O. Knab, H-H. Friihauf, E.W. Messerschmid. J. Thermophys. Heat Transf., 9, 219 (1995). DOI: 10.2514/3.649
- F. Lordet, J.G. Meolans, A. Chauvin, R. Brun. Shock Waves, 4, 299 (1995). DOI: 10.1007/BF01413872
- E.M. Fisher. Combustion and Flame, 108, 127 (1997). DOI: 10.1016/0010-2180(85)90088-4
- E.V. Kustova, E.A. Nagnibeda. Chem. Phys., 233, 57 (1998). DOI: 10.1016/S0301-0104(98)00092-5
- Y. Sakamura. Shock Waves, 13, 361 (2003). DOI: 10.1007/s00193-003-0176-3
- M. Lino da Silva, V. Guerra, J. Loureiro. Chem. Phys., 342, 275 (2007). DOI: 10.1016/j.chemphys.2007.10.010
- M.A. Gallis, R.B. Bond, J.R. Torczynski. J. Chem. Phys., 131, 124311 (2009). DOI: 10.1063/1.3241133
- O.V. Skrebkov, S.P. Karkach. Kinetics and Catalysis, 48 (3), 367 (2007). DOI: 10.1134/S0023158407030044
- O.V. Skrebkov, S.P. Karkach, A.N. Ivanova, S.S. Kostenko. Kinetics and Catalysis, 50 (4), 461 (2009). DOI: 10.1134/S0023158409040016
- I.V. Arsentiev, B.I. Loukhovitski, A.M. Starik. Chem. Phys., 398, 73 (2012). DOI: 10.1016/j.chemphys.2011.06.011
- M. Lino da Silva, J. Loureiro, V. Guerra. Chem. Phys., 398, 96 (2012). DOI: 10.1016/j.chemphys.2011.08.014
- J.G. Kim, I.D. Boyd. Chem. Phys., 415, 237 (2013). DOI: 10.1016/j.chemphys.2013.01.027
- O.V. Skrebkov. J. Modern Phys., 5, 1806 (2014). DOI: 10.4236/jmp.2014.516178
- O.V. Skrebkov. Combustion Theory and Modeling, 19, 131 (2015). DOI: 10.1080/13647830.2014.977352
- O.V. Skrebkov, S.S. Kostenko. Kinetics and Catalysis, 58 (1), 1 (2017). DOI: 10.1134/S0023158417010098
- O.V. Skrebkov, A.L. Smirnov. Kinetics and Catalysis, 59 (5), 545 (2018). DOI: 10.1134/S0023158418050117
- C. Lin, A. Xu, G. Zhang, Y. Li. Combustion and Flame, 164, 137 (2016). DOI: 10.1016/j.combustflame.2015.11.010
- C.M. Tarver. J. Phys. Chem. A, 101, 4845 (1997). DOI: 10.1021/jp9626430
- L. Shi, H. Shen, P. Zhang, D. Zhang, C. Wen. Combust. Sci. Technol., 189 (5), 841 (2017). DOI: 10.1080/00102 202.2016.12605 61
- K.C. Uy, L. Shi, C. Wen. Combustion and Flame, 196, 174 (2018). DOI: 10.1016/j.combustflame.2018.06.015
- C. Lin, K.H. Luo. Combustion and Flame, 198, 356 (2018). DOI: 10.1016/j.combustflame.2018.09.027
- S.N. Dhurandhar, A. Bansal. Phys. Fluids, 30, 117104 (2018). DOI: 10.1063/1.5054194
- O.V. Skrebkov, S.S. Kostenko, A.L. Smirnov. Int. J. Hydrogen Energy, 45, 3251 (2020). DOI: 10.1016/j.ijhydene.2019.11.168
- A.M. Starik, N.S. Titova. ZhTF, 71 (8), 1 (2001). (in Russian)
- I.N. Kadochnikov, I.V. Arsentiev. Shock Waves, 30, 491 (2020). DOI: 10.1007/s00193-020-00961-0
- O.V. Skrebkov, S.V. Kulikov. Chem. Phys., 227, 349 (1998). DOI: 10.1016/S0301-0104(97)00296-6
- M. Capitelli, G. Colonna, F. Esposito. J. Phys. Chem. A, 108, 8930 (2004). DOI: 10.1021/jp048847v
- A. Guy, A. Bourdon, M-Y. Perrin. Chem. Phys., 420, 15 (2013). DOI: 10.1016/j.chemphys.2013.04.018
- S. Voelkel, V. Raman, P.L. Varghese. Shock. Waves, 26, 539 (2016). DOI: 10.1007/s00193-016-0645-0
- A. Zidane, R. Haoui, M. Sellam, Z. Bouyahiaoui. Int. J. Hydrogen Energy, 44, 4361 (2019). DOI: 10.1016/j.ijhydene.2018.12.149
- O. Kunova, A. Kosareva, E. Kustova, E. Nagnibeda. Phys. Rev. Fluids, 5, 123401 (2020). DOI: 10.1103/physrevfluids.5.123401
- A. Kosareva, O. Kunova, E. Kustova, E. Nagnibeda. Phys. Fluids, 34, 026105 (2022). DOI: 10.1063/5.0079664
- N.G. Dautov, A.M. Starik. Combustion, Explosion, and Shock Waves, 30 (5), 571 (1994). DOI: 10.1007/BF00755819
- I.N. Kadochnikov, I.V. Arsentiev, B.I. Loukhovitski, A.S. Sharipov. Chem. Phys., 562, 111669 (2022). DOI: 10.1016/j.chemphys.2022.111669
- O.V. Skrebkov. Russ. J. Phys. Chem. B, 5 (2), 227 (2011)
- Yu. Gorbachev, O. Kunova, G. Shoev. Phys. Fluids, 33, 126105 (2021). DOI: 10.1063/5.0062628
- V.N. Kondratiev, E.E. Nikitin. Gas-Phase Reactions: Kinetics and Mechanisms (Springer, Berlin, 1981), DOI: 10.1007/978-3-642-67608-6
- NIST, National Institute of Standards and Technology, Chemical Kinetics Database, http://kinetics.nist.gov/kinetics/index.jsp
- P.A. Vlasov, V.N. Smirnov, A.M. Tereza. Russ. J. Phys. Chem. B, 10, 456 (2016). DOI: 10.1134/S1990793116030283
- D. Cecere, E. Giacomazzi, A. Ingenito. Int. J. Hydrogen Energy, 39, 10731 (2014). DOI: 10.1016/j.ijhydene.2014.04.126
- N.N. Smirnov, V.F. Nikitin. Int. J. Hydrogen Energy, 39, 1122 (2014). DOI: 10.1016/j.ijhydene.2013.10.097
- P. Sharma, A. Dhar. Int. J. Hydrogen Energy, 41, 6148 (2016). DOI: 10.1016/j.ijhydene.2015.12.021
- R.K. Maurya, N. Akhil. Int. J. Hydrogen Energy, 42, 11911 (2017). DOI: 10.1016/j.ijhydene.2017.02.155
- B. Liu, G-Q. He, F. Qin, J. An, S. Wang, L. Shi. Int. J. Hydrogen Energy, 44, 5007 (2019). DOI: 10.1016/j.ijhydene.2019.01.005
- V.N. Kondratiev. V sb. Problemy khimicheskoj kinetiki (K vos'midesyatiletiyu akademika N.N. Semenova), pod. red. V.N. Kondratieva (Nauka, M., 1979), s. 13. (in Russian)
- A. Fernandes-Ramos, J.A. Miller, S.J. Klippenstein, D.G. Truhlar. Chem. Rev., 106, 4518 (2006). DOI: 10.1021/cr050205w
- R.L. Wadlinger, B.deB. Darwent. J. Phys. Chem., 71, 2057 (1967). DOI: 10.1021/j100866a013
- R.T. Pack, E.A. Butcher, G.A. Parker. J. Chem. Phys., 102, 5998 (1995). DOI: 10.1063/1.469334
- A.J. Dobbyn, M. Stumpf, H-M. Keller, R. Schinke. J. Chem. Phys., 104, 8357 (1996). DOI: 10.1063/1.471587
- L.B. Harding, J. Troe, V.G. Ushakov. Phys. Chem. Chem. Phys., 2, 631 (2000). DOI: 10.1039/a908929b
- D. Rapp, T. Kassal. Chem. Rev., 69, 61 (1969). DOI: 10.1021/cr60257a003
- A.S. Biryukov, B.F. Gordiets. PMTF, 6, 29 (1972). (in Russian)
- E.E. Nikitin, A.I. Osipov. Kolebatel'naya relaksatsiya v gazakh. Itogi nauki i tekhniki. Ser. Kinetika i kataliz (VINITI, M., 1977), t. 4. (in Russian)
- N.M. Kuznetsov. Kinetika monomolekulyarnykh reaktsij (Nauka, M., 1982) (in Russian)
- O.V. Skrebkov. Chem. Phys., 191, 87 (1995). DOI: 10.1016/0301-0104(94)00303-R
- S.P. Karkach, V.I. Osherov. J. Chem. Phys., 110, 11918 (1999). DOI: 10.1063/1.479131
- S.P. Karkach, V.I. Osherov, V.G. Ushakov. Chem. Phys. Reports, 19 10, 1777 (2001)
- J. Troe, V.G. Ushakov. J. Chem. Phys., 128, 204307 (2008). DOI: 10.1063/1.2917201
- Z. Sun, D.H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S-Y. Lee, S.Y. Lin, H. Guo. J. Am. Chem. Soc., 130, 14962 (2008). DOI: 10.1021/ja8068616
- M. Jorfi, P. Honvault, P. Bargueno, T. Gonzalez-Lezana, P. Larregaray, L. Bonnet, P. Halvick. J. Chem. Phys., 130, 184301 (2009). DOI: 10.1063/1.3128537
- P. Szabo, G. Lendvay. J. Phys. Chem. A, 119, 12485 (2015). DOI: 10.1021/acs.jpca.5b07938
- N.V. Evtyukhin, S.V. Kulikov, V.M. Vasil'ev, A.P. Genich, G.B. Manelis, O.V. Skrebkov. V sb.: Khimicheskaya fizika goreniya i vzryva. Kinetika khimicheskikh reaktsij. Materialy V Vsesoyuznogo simpoziuma po goreniyu i vzryvy (Chernogolovka, 1977), s. 5. (in Russian)
- A.P. Genich, N.V. Evtyukhin, S.V. Kulikov, G.B. Manelis, M.E. Solovieva. PMTF, 1, 34 (1979). (in Russian)
- N.V. Evtyukhin, S.V. Kulikov, M.E. Solovieva. PMTF, 6, 4 (1982). (in Russian)
- S. Chapman, T.G. Cowling. The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, UK., Cambridge, 1952)
- N.M. Kuznetsov. DAN USSR, 202 (6), 1367 (1972). (in Russian)
- S.A. Losev. Fizika goreniya i vzryva, 6, 767 (1973). (in Russian)
- O.V. Skrebkov, S.P. Karkach, V.M. Vasil'ev, A.L. Smirnov. Chem. Phys. Lett., 375, 413 (2003). DOI: 10.1016/S0009-2614(03)00875-3
- S.-O. Ryu, S.M. Hwang, M.J. Rabinovitz. J. Phys. Chem., 99, 13984 (1995). DOI: 10.1021/j100038a033
- E.L. Petersen, D.M. Kalitan, M.J.A. Rickard. J. Propulsion and Power, 20, 665 (2004). DOI: 10.2514/1.11380
- R. Mevel, S. Pichon, L. Catoire, N. Chaumeix, C-E. Paillard, J.E. Shepherd. Proceedings of the 34th International Symposium on Combustion (Warsaw, Poland, July 29 August 3 2012)
- V.A. Pavlov, O.P. Shatalov. Kinetics and Catalysis, 52 (2), 157 (2011). DOI: 10.1134/S0023158411020157
- J.A. Miller, R.J. Kee, C.K. Westbrook. Annu. Rev. Phys. Chem., 41, 345 (1990). DOI: 10.1146/annurev.pc.41.100190.002021
- Termodinamicheskie svojstva individual'nykh veschestv, pod red. V.P. Glushko (Nauka, M., 1978) (in Russian)
- R. Shaw. Int. J. Chem. Kin., 9, 929 (1977). DOI: 10.1002/kin.550090608
- K.F. Herzfeld, T.A. Litovitz. Absorbtion and Dispersion of Ultrasonic Waves (Acad. Press, N.Y.L., 1959)
- C.B. Moore. J. Chem. Phys., 43, 2979 (1965). DOI: 10.1063/1.1697261
- S. Ormonde, Rev. Mod. Phys., 47 (1), 193 (1975). DOI: 10.1103/RevModPhys.47.193
- A.V. Eletskiy. UFN, 134 (2), 237 (1981). (in Russian). DOI: 10.3367/UFNr.0134.198106b.0237
- A. Kosareva, E. Kustova, M. Mekhonoshina. Plasma Sources Sci. Technol., 31, 104002 (2022), DOI: 10.1088/1361-6595/ac91f2
- I. Adamovich, S. Macheret, J. Rich, C. Treanor. J. Thermophys. Heat Transfer, 12, 57 (1998). DOI: 10.2514/2.6302
- O.V. Skrebkov, A.L. Smirnov. Sov. J. Chem. Phys., 10 (8), 1598 (1992)
- A.L. Smirnov, O.V. Skrebkov. Sov. J. Chem. Phys., 11 (1), 51 (1992)
- I.A. Konovalova, S.Ya. Umanskii. Khimicheskaya fizika, 1 (7), 901 (1982). (in Russian)
- G.L. Schott, R.W. Getzinger. In: Physical Chemistry of Fast Reactions, Gas Phase Reactions of Small Molecules (London, Plenum, 1973), v. 1, p. 81
- F.E. Belles, M.R. Lauver. J. Chem. Phys., 40, 415 (1964). DOI: 10.1063/1.1725129
- G.B. Skinner, G.H. Ringrose, J. Chem. Phys., 42, 2190 (1965). DOI: 10.1063/1.1696266
- Y. Hidaka, S. Takahashi, H. Kawano, M. Suga, W.C. Gardiner Jr.. J. Phys. Chem., 86, 1429 (1982). DOI: 10.1021/j100397a043
- P.W. Fairchild, G.P. Smith, D.R. Crosley. J. Chem. Phys., 79, 1795 (1983). DOI: 10.1063/1.446025
- G.P. Smith, D.R. Crosley. J. Chem. Phys., 85, 3896 (1986). DOI: 10.1063/1.450910
- L.P. Dempsey, C. Murray, M.I. Lester. J. Chem. Phys., 127, 151101 (2007). DOI: 10.1063/1.2800316
- L.P. Dempsey, T.D. Sechler, C. Murray, M.I. Lester. J. Phys. Chem. A, 113, 6851 (2009). DOI: 10.1021/jp902935c
- M. Brouard, J. Lawlor, G. McCrudden, T. Perkins, S.A. Seamons, P. Stevenson, H. Chadwick, F.J. Aoiz. J. Chem. Phys., 146, 244313 (2017). DOI: 10.1063/1.4989567
- R.R. Baldwin, N.S. Corney, R.M. Precious. Nature, 169, 201 (1952). DOI: 10.1038/169201b0
- R.R. Baldwin, R.F. Simmons. Trans. Faraday Soc., 51, 680 (1955). DOI: 10.1039/TF9555100680
- R.R. Baldwin, R.F. Simmons. Trans. Faraday Soc., 53, 955 (1957). DOI: 10.1039/TF9575300955
- R.R. Baldwin, D.W. Cowe. Trans. Furaday Soc., 58, 1768 (1962). DOI: 10.1039/TF9625801768
- R.R. Baldwin, R.F. Simmons, R.W. Walker. Trans. Faraday Soc., 62, 2476 (1966). DOI: 10.1039/TF9666202476
- V.V. Azatyan, V.A. Pavlov, O.P. Shatalov. Kinetics and Catalysis, 46 (6), (2005). DOI: 0.31857/S0453881120030041
- V.V. Azatyan, Yu.N. Shebeko, I.A. Bolod'yan, A.Yu. Shebeko, V.Yu. Navtsenya, A.V. Tomilin. Khimicheskaya fizika, 27 (7), 72 (2008). (in Russian)
- N.M. Rubtsov, B.S. Seplyarskii, A.P. Kalinin, K.Ya. Troshin. ZhTF, 91 (6), 895 (2021). (in Russian) DOI: 10.21883/JTF.2021.06.50857.269-20
- S.A. Losev, V.N. Makarov, V.A. Pavlov, O.P. Shatalov. Fizika goreniya i vzryva, 9 (4), 463 (1973). (in Russian)
- A.S. Biryukov, A.Yu. Volkov, A.I. Demin, E.M. Kudryavtsev, Yu.A. Kulagin, N.N. Sobolev, L.A. Shelepin. ZhETF, 68 (5), 1664 (1975). (in Russian)
- J.D. Lambert, R. Salter. Proc. Roy. Soc., A253, 277 (1959). DOI: 10.1098/rspa.1959.0193
- R. Holmes, G.R. Jones, N. Pusat. J. Chem. Phys., 41 (8), 2512 (1964). DOI: 10.1063/1.1726296
- R.C. Millican, D.R. White. J. Chem. Phys., 39, 3209 (1963). DOI: 10.1063/1.1734182
- L. Landau, E. Teller. Phys. Z. Sow., 10, 34 (1936)
- J.C. Keck, G. Carrier. J. Chem. Phys., 43, 2284 (1965). DOI: 10.1063/1.1697125
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.