Vibrational nonequilibrium in the reaction of hydrogen with oxygen (Review)
Skrebkov O.V. 1, Kostenko S.S.1, Smirnov A.L.1
1Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Сhernogolovka, Russia
Email: asm@icp.ac.ru

PDF
The field of research of vibrational relaxation processes in their interaction with chemical reactions is currently characterized by high activity. This review is based on our work. A vibrational nonequilibrium model of hydrogen oxidation is presented within the framework of a sequential elementary kinetic approach. The central element is to take into account the vibrational nonequilibrium of the HO2 radical as the most important intermediate in the process of chain branching and in the formation of electronically excited particles. The results of shock wave experiments and corresponding calculations for the H2+O2+Ar system at temperatures T<1500 K and pressures p<4 atm are discussed. It is shown that under these conditions, vibrational nonequilibrium is the most important factor determining the mechanism and rate of the process. The analysis of the thermal effect at various stages of the process, the inhibition of the reaction of hydrogen with oxygen by additives of polyatomic gases and the mechanism of formation of an electronically excited OH(A^2Σ+) radical is given. Keywords: chemical kinetics, vibrational relaxation, electronic excitation, shock wave.
  1. P.V. Marrone, C.E. Treanor. Phys. Fluids, 6, 1215 (1963). DOI: 10.1063/1.1706888
  2. E.V. Stupochenko, S.A. Losev, A.I. Osipov. Relaksatsionnye protsessy v udarnykh volnakh (Nauka, M., 1965) (in Russian)
  3. S.A. Losev. Gazodinamicheskie lazery (Nauka, M., 1977 (in Russian)
  4. V.M. Vasil'ev, S.V. Kulikov, O.V. Skrebkov. PMTF, 4, 13 (1977). (in Russian)
  5. K. Smith, R. Thomson. Chislennoe modelirovanie gazovykh lazerov (Mir, M., 1981) (in Russian)
  6. A.S. Bashkin, V.I. Igoshin, A.N. Oraevsky, V.A. Shcheglov. Khimicheskie lazery (Nauka, M., 1982) (in Russian)
  7. R.C. Brown. Combustion and Flame, 62, 1 (1985). DOI: 10.1016/0010-2180(85)90088-4
  8. C. Park. Nonequilibrium Hypersonic Aerothermodynamics (Wiley, NY., 1990), Document ID 19910029860
  9. O. Knab, H-H. Friihauf, E.W. Messerschmid. J. Thermophys. Heat Transf., 9, 219 (1995). DOI: 10.2514/3.649
  10. F. Lordet, J.G. Meolans, A. Chauvin, R. Brun. Shock Waves, 4, 299 (1995). DOI: 10.1007/BF01413872
  11. E.M. Fisher. Combustion and Flame, 108, 127 (1997). DOI: 10.1016/0010-2180(85)90088-4
  12. E.V. Kustova, E.A. Nagnibeda. Chem. Phys., 233, 57 (1998). DOI: 10.1016/S0301-0104(98)00092-5
  13. Y. Sakamura. Shock Waves, 13, 361 (2003). DOI: 10.1007/s00193-003-0176-3
  14. M. Lino da Silva, V. Guerra, J. Loureiro. Chem. Phys., 342, 275 (2007). DOI: 10.1016/j.chemphys.2007.10.010
  15. M.A. Gallis, R.B. Bond, J.R. Torczynski. J. Chem. Phys., 131, 124311 (2009). DOI: 10.1063/1.3241133
  16. O.V. Skrebkov, S.P. Karkach. Kinetics and Catalysis, 48 (3), 367 (2007). DOI: 10.1134/S0023158407030044
  17. O.V. Skrebkov, S.P. Karkach, A.N. Ivanova, S.S. Kostenko. Kinetics and Catalysis, 50 (4), 461 (2009). DOI: 10.1134/S0023158409040016
  18. I.V. Arsentiev, B.I. Loukhovitski, A.M. Starik. Chem. Phys., 398, 73 (2012). DOI: 10.1016/j.chemphys.2011.06.011
  19. M. Lino da Silva, J. Loureiro, V. Guerra. Chem. Phys., 398, 96 (2012). DOI: 10.1016/j.chemphys.2011.08.014
  20. J.G. Kim, I.D. Boyd. Chem. Phys., 415, 237 (2013). DOI: 10.1016/j.chemphys.2013.01.027
  21. O.V. Skrebkov. J. Modern Phys., 5, 1806 (2014). DOI: 10.4236/jmp.2014.516178
  22. O.V. Skrebkov. Combustion Theory and Modeling, 19, 131 (2015). DOI: 10.1080/13647830.2014.977352
  23. O.V. Skrebkov, S.S. Kostenko. Kinetics and Catalysis, 58 (1), 1 (2017). DOI: 10.1134/S0023158417010098
  24. O.V. Skrebkov, A.L. Smirnov. Kinetics and Catalysis, 59 (5), 545 (2018). DOI: 10.1134/S0023158418050117
  25. C. Lin, A. Xu, G. Zhang, Y. Li. Combustion and Flame, 164, 137 (2016). DOI: 10.1016/j.combustflame.2015.11.010
  26. C.M. Tarver. J. Phys. Chem. A, 101, 4845 (1997). DOI: 10.1021/jp9626430
  27. L. Shi, H. Shen, P. Zhang, D. Zhang, C. Wen. Combust. Sci. Technol., 189 (5), 841 (2017). DOI: 10.1080/00102 202.2016.12605 61
  28. K.C. Uy, L. Shi, C. Wen. Combustion and Flame, 196, 174 (2018). DOI: 10.1016/j.combustflame.2018.06.015
  29. C. Lin, K.H. Luo. Combustion and Flame, 198, 356 (2018). DOI: 10.1016/j.combustflame.2018.09.027
  30. S.N. Dhurandhar, A. Bansal. Phys. Fluids, 30, 117104 (2018). DOI: 10.1063/1.5054194
  31. O.V. Skrebkov, S.S. Kostenko, A.L. Smirnov. Int. J. Hydrogen Energy, 45, 3251 (2020). DOI: 10.1016/j.ijhydene.2019.11.168
  32. A.M. Starik, N.S. Titova. ZhTF, 71 (8), 1 (2001). (in Russian)
  33. I.N. Kadochnikov, I.V. Arsentiev. Shock Waves, 30, 491 (2020). DOI: 10.1007/s00193-020-00961-0
  34. O.V. Skrebkov, S.V. Kulikov. Chem. Phys., 227, 349 (1998). DOI: 10.1016/S0301-0104(97)00296-6
  35. M. Capitelli, G. Colonna, F. Esposito. J. Phys. Chem. A, 108, 8930 (2004). DOI: 10.1021/jp048847v
  36. A. Guy, A. Bourdon, M-Y. Perrin. Chem. Phys., 420, 15 (2013). DOI: 10.1016/j.chemphys.2013.04.018
  37. S. Voelkel, V. Raman, P.L. Varghese. Shock. Waves, 26, 539 (2016). DOI: 10.1007/s00193-016-0645-0
  38. A. Zidane, R. Haoui, M. Sellam, Z. Bouyahiaoui. Int. J. Hydrogen Energy, 44, 4361 (2019). DOI: 10.1016/j.ijhydene.2018.12.149
  39. O. Kunova, A. Kosareva, E. Kustova, E. Nagnibeda. Phys. Rev. Fluids, 5, 123401 (2020). DOI: 10.1103/physrevfluids.5.123401
  40. A. Kosareva, O. Kunova, E. Kustova, E. Nagnibeda. Phys. Fluids, 34, 026105 (2022). DOI: 10.1063/5.0079664
  41. N.G. Dautov, A.M. Starik. Combustion, Explosion, and Shock Waves, 30 (5), 571 (1994). DOI: 10.1007/BF00755819
  42. I.N. Kadochnikov, I.V. Arsentiev, B.I. Loukhovitski, A.S. Sharipov. Chem. Phys., 562, 111669 (2022). DOI: 10.1016/j.chemphys.2022.111669
  43. O.V. Skrebkov. Russ. J. Phys. Chem. B, 5 (2), 227 (2011)
  44. Yu. Gorbachev, O. Kunova, G. Shoev. Phys. Fluids, 33, 126105 (2021). DOI: 10.1063/5.0062628
  45. V.N. Kondratiev, E.E. Nikitin. Gas-Phase Reactions: Kinetics and Mechanisms (Springer, Berlin, 1981), DOI: 10.1007/978-3-642-67608-6
  46. NIST, National Institute of Standards and Technology, Chemical Kinetics Database, http://kinetics.nist.gov/kinetics/index.jsp
  47. P.A. Vlasov, V.N. Smirnov, A.M. Tereza. Russ. J. Phys. Chem. B, 10, 456 (2016). DOI: 10.1134/S1990793116030283
  48. D. Cecere, E. Giacomazzi, A. Ingenito. Int. J. Hydrogen Energy, 39, 10731 (2014). DOI: 10.1016/j.ijhydene.2014.04.126
  49. N.N. Smirnov, V.F. Nikitin. Int. J. Hydrogen Energy, 39, 1122 (2014). DOI: 10.1016/j.ijhydene.2013.10.097
  50. P. Sharma, A. Dhar. Int. J. Hydrogen Energy, 41, 6148 (2016). DOI: 10.1016/j.ijhydene.2015.12.021
  51. R.K. Maurya, N. Akhil. Int. J. Hydrogen Energy, 42, 11911 (2017). DOI: 10.1016/j.ijhydene.2017.02.155
  52. B. Liu, G-Q. He, F. Qin, J. An, S. Wang, L. Shi. Int. J. Hydrogen Energy, 44, 5007 (2019). DOI: 10.1016/j.ijhydene.2019.01.005
  53. V.N. Kondratiev. V sb. Problemy khimicheskoj kinetiki (K vos'midesyatiletiyu akademika N.N. Semenova), pod. red. V.N. Kondratieva (Nauka, M., 1979), s. 13. (in Russian)
  54. A. Fernandes-Ramos, J.A. Miller, S.J. Klippenstein, D.G. Truhlar. Chem. Rev., 106, 4518 (2006). DOI: 10.1021/cr050205w
  55. R.L. Wadlinger, B.deB. Darwent. J. Phys. Chem., 71, 2057 (1967). DOI: 10.1021/j100866a013
  56. R.T. Pack, E.A. Butcher, G.A. Parker. J. Chem. Phys., 102, 5998 (1995). DOI: 10.1063/1.469334
  57. A.J. Dobbyn, M. Stumpf, H-M. Keller, R. Schinke. J. Chem. Phys., 104, 8357 (1996). DOI: 10.1063/1.471587
  58. L.B. Harding, J. Troe, V.G. Ushakov. Phys. Chem. Chem. Phys., 2, 631 (2000). DOI: 10.1039/a908929b
  59. D. Rapp, T. Kassal. Chem. Rev., 69, 61 (1969). DOI: 10.1021/cr60257a003
  60. A.S. Biryukov, B.F. Gordiets. PMTF, 6, 29 (1972). (in Russian)
  61. E.E. Nikitin, A.I. Osipov. Kolebatel'naya relaksatsiya v gazakh. Itogi nauki i tekhniki. Ser. Kinetika i kataliz (VINITI, M., 1977), t. 4. (in Russian)
  62. N.M. Kuznetsov. Kinetika monomolekulyarnykh reaktsij (Nauka, M., 1982) (in Russian)
  63. O.V. Skrebkov. Chem. Phys., 191, 87 (1995). DOI: 10.1016/0301-0104(94)00303-R
  64. S.P. Karkach, V.I. Osherov. J. Chem. Phys., 110, 11918 (1999). DOI: 10.1063/1.479131
  65. S.P. Karkach, V.I. Osherov, V.G. Ushakov. Chem. Phys. Reports, 19 10, 1777 (2001)
  66. J. Troe, V.G. Ushakov. J. Chem. Phys., 128, 204307 (2008). DOI: 10.1063/1.2917201
  67. Z. Sun, D.H. Zhang, C. Xu, S. Zhou, D. Xie, G. Lendvay, S-Y. Lee, S.Y. Lin, H. Guo. J. Am. Chem. Soc., 130, 14962 (2008). DOI: 10.1021/ja8068616
  68. M. Jorfi, P. Honvault, P. Bargueno, T. Gonzalez-Lezana, P. Larregaray, L. Bonnet, P. Halvick. J. Chem. Phys., 130, 184301 (2009). DOI: 10.1063/1.3128537
  69. P. Szabo, G. Lendvay. J. Phys. Chem. A, 119, 12485 (2015). DOI: 10.1021/acs.jpca.5b07938
  70. N.V. Evtyukhin, S.V. Kulikov, V.M. Vasil'ev, A.P. Genich, G.B. Manelis, O.V. Skrebkov. V sb.: Khimicheskaya fizika goreniya i vzryva. Kinetika khimicheskikh reaktsij. Materialy V Vsesoyuznogo simpoziuma po goreniyu i vzryvy (Chernogolovka, 1977), s. 5. (in Russian)
  71. A.P. Genich, N.V. Evtyukhin, S.V. Kulikov, G.B. Manelis, M.E. Solovieva. PMTF, 1, 34 (1979). (in Russian)
  72. N.V. Evtyukhin, S.V. Kulikov, M.E. Solovieva. PMTF, 6, 4 (1982). (in Russian)
  73. S. Chapman, T.G. Cowling. The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, UK., Cambridge, 1952)
  74. N.M. Kuznetsov. DAN USSR, 202 (6), 1367 (1972). (in Russian)
  75. S.A. Losev. Fizika goreniya i vzryva, 6, 767 (1973). (in Russian)
  76. O.V. Skrebkov, S.P. Karkach, V.M. Vasil'ev, A.L. Smirnov. Chem. Phys. Lett., 375, 413 (2003). DOI: 10.1016/S0009-2614(03)00875-3
  77. S.-O. Ryu, S.M. Hwang, M.J. Rabinovitz. J. Phys. Chem., 99, 13984 (1995). DOI: 10.1021/j100038a033
  78. E.L. Petersen, D.M. Kalitan, M.J.A. Rickard. J. Propulsion and Power, 20, 665 (2004). DOI: 10.2514/1.11380
  79. R. Mevel, S. Pichon, L. Catoire, N. Chaumeix, C-E. Paillard, J.E. Shepherd. Proceedings of the 34th International Symposium on Combustion (Warsaw, Poland, July 29 August 3 2012)
  80. V.A. Pavlov, O.P. Shatalov. Kinetics and Catalysis, 52 (2), 157 (2011). DOI: 10.1134/S0023158411020157
  81. J.A. Miller, R.J. Kee, C.K. Westbrook. Annu. Rev. Phys. Chem., 41, 345 (1990). DOI: 10.1146/annurev.pc.41.100190.002021
  82. Termodinamicheskie svojstva individual'nykh veschestv, pod red. V.P. Glushko (Nauka, M., 1978) (in Russian)
  83. R. Shaw. Int. J. Chem. Kin., 9, 929 (1977). DOI: 10.1002/kin.550090608
  84. K.F. Herzfeld, T.A. Litovitz. Absorbtion and Dispersion of Ultrasonic Waves (Acad. Press, N.Y.L., 1959)
  85. C.B. Moore. J. Chem. Phys., 43, 2979 (1965). DOI: 10.1063/1.1697261
  86. S. Ormonde, Rev. Mod. Phys., 47 (1), 193 (1975). DOI: 10.1103/RevModPhys.47.193
  87. A.V. Eletskiy. UFN, 134 (2), 237 (1981). (in Russian). DOI: 10.3367/UFNr.0134.198106b.0237
  88. A. Kosareva, E. Kustova, M. Mekhonoshina. Plasma Sources Sci. Technol., 31, 104002 (2022), DOI: 10.1088/1361-6595/ac91f2
  89. I. Adamovich, S. Macheret, J. Rich, C. Treanor. J. Thermophys. Heat Transfer, 12, 57 (1998). DOI: 10.2514/2.6302
  90. O.V. Skrebkov, A.L. Smirnov. Sov. J. Chem. Phys., 10 (8), 1598 (1992)
  91. A.L. Smirnov, O.V. Skrebkov. Sov. J. Chem. Phys., 11 (1), 51 (1992)
  92. I.A. Konovalova, S.Ya. Umanskii. Khimicheskaya fizika, 1 (7), 901 (1982). (in Russian)
  93. G.L. Schott, R.W. Getzinger. In: Physical Chemistry of Fast Reactions, Gas Phase Reactions of Small Molecules (London, Plenum, 1973), v. 1, p. 81
  94. F.E. Belles, M.R. Lauver. J. Chem. Phys., 40, 415 (1964). DOI: 10.1063/1.1725129
  95. G.B. Skinner, G.H. Ringrose, J. Chem. Phys., 42, 2190 (1965). DOI: 10.1063/1.1696266
  96. Y. Hidaka, S. Takahashi, H. Kawano, M. Suga, W.C. Gardiner Jr.. J. Phys. Chem., 86, 1429 (1982). DOI: 10.1021/j100397a043
  97. P.W. Fairchild, G.P. Smith, D.R. Crosley. J. Chem. Phys., 79, 1795 (1983). DOI: 10.1063/1.446025
  98. G.P. Smith, D.R. Crosley. J. Chem. Phys., 85, 3896 (1986). DOI: 10.1063/1.450910
  99. L.P. Dempsey, C. Murray, M.I. Lester. J. Chem. Phys., 127, 151101 (2007). DOI: 10.1063/1.2800316
  100. L.P. Dempsey, T.D. Sechler, C. Murray, M.I. Lester. J. Phys. Chem. A, 113, 6851 (2009). DOI: 10.1021/jp902935c
  101. M. Brouard, J. Lawlor, G. McCrudden, T. Perkins, S.A. Seamons, P. Stevenson, H. Chadwick, F.J. Aoiz. J. Chem. Phys., 146, 244313 (2017). DOI: 10.1063/1.4989567
  102. R.R. Baldwin, N.S. Corney, R.M. Precious. Nature, 169, 201 (1952). DOI: 10.1038/169201b0
  103. R.R. Baldwin, R.F. Simmons. Trans. Faraday Soc., 51, 680 (1955). DOI: 10.1039/TF9555100680
  104. R.R. Baldwin, R.F. Simmons. Trans. Faraday Soc., 53, 955 (1957). DOI: 10.1039/TF9575300955
  105. R.R. Baldwin, D.W. Cowe. Trans. Furaday Soc., 58, 1768 (1962). DOI: 10.1039/TF9625801768
  106. R.R. Baldwin, R.F. Simmons, R.W. Walker. Trans. Faraday Soc., 62, 2476 (1966). DOI: 10.1039/TF9666202476
  107. V.V. Azatyan, V.A. Pavlov, O.P. Shatalov. Kinetics and Catalysis, 46 (6), (2005). DOI: 0.31857/S0453881120030041
  108. V.V. Azatyan, Yu.N. Shebeko, I.A. Bolod'yan, A.Yu. Shebeko, V.Yu. Navtsenya, A.V. Tomilin. Khimicheskaya fizika, 27 (7), 72 (2008). (in Russian)
  109. N.M. Rubtsov, B.S. Seplyarskii, A.P. Kalinin, K.Ya. Troshin. ZhTF, 91 (6), 895 (2021). (in Russian) DOI: 10.21883/JTF.2021.06.50857.269-20
  110. S.A. Losev, V.N. Makarov, V.A. Pavlov, O.P. Shatalov. Fizika goreniya i vzryva, 9 (4), 463 (1973). (in Russian)
  111. A.S. Biryukov, A.Yu. Volkov, A.I. Demin, E.M. Kudryavtsev, Yu.A. Kulagin, N.N. Sobolev, L.A. Shelepin. ZhETF, 68 (5), 1664 (1975). (in Russian)
  112. J.D. Lambert, R. Salter. Proc. Roy. Soc., A253, 277 (1959). DOI: 10.1098/rspa.1959.0193
  113. R. Holmes, G.R. Jones, N. Pusat. J. Chem. Phys., 41 (8), 2512 (1964). DOI: 10.1063/1.1726296
  114. R.C. Millican, D.R. White. J. Chem. Phys., 39, 3209 (1963). DOI: 10.1063/1.1734182
  115. L. Landau, E. Teller. Phys. Z. Sow., 10, 34 (1936)
  116. J.C. Keck, G. Carrier. J. Chem. Phys., 43, 2284 (1965). DOI: 10.1063/1.1697125
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru