Switching processes in ceramics of solid solutions based on Ca0.3Ba0.7Nb2O6
Guseva O.S.1, Malyshkina O.V. 2
1MIREA - Russian Technological University, Moscow, Russia
2Tver State University, Tver, Russia
Email: 4ikulaeva@mail.ru, Olga.Malyshkina@mail.ru

PDF
In this work, ceramic samples with a structure of the type of tetragonal tungsten bronzes, composition Ca0.3Ba0.7Nb2O6 (CBN30) pure and with modifying additives SrTiO3, KTaO3 or LiTaO3 (5 mass %) were studied by the oscillographic method. It is shown that the introduction of modifying additives into LiTaO3 ceramics leads to an increase in the reversal polarization and to a decrease in dielectric losses, both at room temperature and at high temperatures. The introduction of SrTiO3 impurity into the CBN30 composition leads to the greatest increase in the reversal polarization. In contrast to ceramics based on lead zirconate titanate, which have a perovskite type structure, the introduction of SrTiO3 into CBN30 (having the structure of tetragonal tungsten bronzes) does not significantly improve the ferroelectric properties. It has been found that at temperatures above 100oC for pure CBN30 ceramics, above 165oC for CBN30 + 5% SrTiO3 and CBN30 + 5% and above 200oC for CBN30 + 5% LiTaO3, there is a strong increase in dielectric losses. The contribution of dielectric losses to switching processes makes it impossible to determine the temperature of the ferroelectric phase transition for solid solutions based on CBN30 from the temperature dependences of dielectric hysteresis loops. Keywords: piezoelectric ceramics, barium-calcium niobate, lead-free materials, switching processes, dielectric hysteresis.
  1. J. Rodel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic. J. Eur. Ceram. Soc. 35, 6, 1659 (2015)
  2. B. Malic, A. Bencan, T. Rojac, M. Kosec. Acta Chim. Slovenica 55, 4, 719 (2008)
  3. J.-Q. Zhao, Y.-G. Liu, M.-H. Fang, Z.-H. Huang, T.-H. Zhang. J. Electroceram. 32, 255 (2014)
  4. W. Bai, D. Chen, Y. Huang, B. Shen, J. Zhai, Z. Ji. J. Alloys Comp. 667, 6 (2016)
  5. G.M. Kaleva, E.D. Politova, A.V. Mosunov. Neorgan. materialy 57, 5, 567 (2021). (in Russian)
  6. E.D. Politova, G.M. Kaleva, A.V. Mosunov, N.V. Sadovskaya, T.S. Ilina, D.A. Kiselev, V.V. Shvartsman. Zhurn. neorgan. khimii 66, 8, 1156 (2021). (in Russian)
  7. O.V. Malyshkina, G.S. Shishkov, A.A. Martyanov, A.I. Ivanova. Mod. Electron. Mater. 6, 4, 141 (2020)
  8. A.V. Es'kov, A.S. Anokhin, M.T. Bui, O.V. Pakhomov, A.A. Semenov, P.Yu. Belyavskiy, A.B. Ustinov. IOP Conf. Ser: J. Phys. 1038, 012115 (2018)
  9. H. Chena, Sh. Guo, Ch. Yao, X. Dong, Ch. Mao, G. Wang. Ceram. Int. 43, 3610 (2017)
  10. B. Li, D. Wang, G. Chen, X. Liu, Ch. Yuan. J. Mater. Sci. 30, 19262 (2019)
  11. O.S. Guseva, O.V. Malyshkina, A.S. Mitchenko. Fiziko-khimicheskiye aspekty izucheniya klasterov, nanostruktur i nanomaterialov 14, 572 (2022). (in Russian)
  12. T. Lukasiewicz, M.A. Swirkowicz, J. Dec, W. Hofman, W. Szyrski. J. Crystal Growth 310, 7, 1464 (2008)
  13. O.V. Malyshkina, V.S. Lisitsyn, J. Dec, T. ukasiewicz. FTT 56, 9, 1763 (2014). (in Russian)
  14. O.V. Malyshkina, O.S. Guseva, A.S. Mitchenko. FTT 65, 6, 907 (2023). (in Russian)
  15. C.B. Sawyer, C.H. Tower. Phys. Rev 35, 269 (1930)
  16. O.V. Malyshkina, A.Yu. Eliseev, R.M. Grechishkin. Adv. Condens. Matter Phys. 2017, ID 2507808 (2017).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru