Physical nature of the "stabilization" effect of the oxygen content in La0.8Sr0.2MnO3+δ thin films
Nikolaenko Yu. M.1, Boutko V. G.1, Gusev A. A.1, Efros N. B.1
1Donetsk Institute of Physics and Technology named after. A.A. Galkina, Donetsk, Russia
Email: nik@donfti.ru, gusev@dfti.donbass.com, efrosn@donfti.ru

PDF
Using ab initio calculations by the density functional theory in the LDA + U approximation, the features of the formation process of intrinsic defects in crystals of doped manganite with a perovskite-like structure are studied. It is shown that the nature of the energy barrier, which provides the relative stability of the material of high-quality La0.8Sr0.2MnO3+δ films with a stoichiometric composition with respect to oxygen, due to the different energy of formation of metal and oxygen vacancies. In this case, the physical mechanism for the formation of an oxygen-excessive state of the crystal realizes in accordance with a well-known physical model, by forming additional cation-deficient crystal cells by means of the depletion of complete ones. Keywords: doped manganite, ab initio calculations, defect formation mechanism, oxygen and cation vacancies, formation energy of point defects.
  1. Yu.M. Nikolaenko, A.B. Mukhin, V.A. Chaika, V.V. Burkhovetsky. ZhTF, 80, 8, 115 (2010). (in Russian)
  2. G.A. Ovsyannikov, A.M. Petrzhik, I.V. Borisenko, A.A. Klimov, V.V. Demidov, S.A. Nikitov. ZhETF 135, 1, 56 (2009). (in Russian)
  3. A. Abrutis, V. Plausinaitiene, V. Kubilius, A. Teiserskis, Z. Saltyte, R. Butkute, J.P. Senateur. Thin Solid Films 413, 1-2, 32 (2002)
  4. P.M. Leufke, A.K. Mishra, A. Beck, D. Wang, C. Kubel, H. Hahn, R. Kruk. Thin Solid Films 520, 5521 (2012)
  5. J.A.M. van Roosmalen, E.H.P. Cordfunke. J. Solid State Chem. 110, 109 (1994)
  6. Yu.G. Tchukalin, A.E. Teplykh. FTT 48, 12, 2183 (2006). (in Russian)
  7. Yu.M. Nikolaenko, N.B. Efros, D.O. Fedyuk, I.Yu. Reshidova. FTT 65, 6, 907 (2023). (in Russian)
  8. K. Nakamura, M. Xu, M. Klaser, G. Linker. J. Solid State Chem. 156, 143 (2001)
  9. G. Trimarchi, N. Binggeli. Phys. Rev. B 71, 3, 035101 (2005)
  10. T. Tanaka, K. Matsunaga, Y. Ikuhara, T. Yamamoto. Phys. Rev. B 68, 20, 205213 (2003)
  11. V.M. Tapilin. Vestn. NGU. Ser. Fizika, 2 (56), (2007). (in Russian)
  12. M.A. Korotin, N.A. Skorikov, V.I. Anisimov. Solid State Phenomena 215, 46 (2014)
  13. H. Zenia, G.A. Gehring, W.M. Temmerman. New J. Phys. 9, 105 (2007)
  14. C.G. Van de Walle, J. Neugebauer. J. Appl. Phys. 95, 8, (2004)
  15. D. Juan, M. Pruneda, V. Ferrari. Sci. Rep. 11, 6706 (2021)
  16. E. Olsson, X. Apricio-Angles, N.H. de Leeuw. J. Chem. Phys. 145, 1, 014703 (2016)
  17. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura. Phys. Rev. B 51, 20, 14103 (1995)
  18. G. Kresse, J. Hafner. Phys. Rev. B 48, 17, 13115 (1993)
  19. J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 18, 3865 (1996)
  20. M. Cococcioni, S. de Gironcoli. Phys. Rev. B 71, 3, 035105 (2005)
  21. Yu.M. Nikolaenko, V.G. Butko, A.A. Gusev, N.B. Efros. FTVD 33, 2, 80 (2023)
  22. Yu.M. Nikolaenko, N.B. Efros, A.N. Artemov. ZhTF, 91, 12, 1957 (2021). (in Russian)
  23. Yu.M. Nikolaenko, A.N. Artemov, Yu.V. Medvedev, N.B. Efros, I.V. Zhikharev, I.Yu. Reshidova, A.A. Tikhii, S.V. Kara-Murza. J. Phys. D 49, 375302 (2016)
  24. A.V. Berenov, J.L. MacManus-Driscoll, J.A. Kilner. Solid State Ionics 122, 41 (1999)
  25. R. Cortes-Gil, A. Arroyo, L. Ruiz-Gonzalez, J.M. Alonso, A. Hernando, J.M. Gonzalez-Calbet, M. Vallet-Regi. J. Phys. Chem. Solids 67, 579 (2006)
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru