Calculation of the component composition of the surface layers of titanium carbide sputtered with light ions
Manukhin V.V. 1
1National Research University «Moscow Power Engineering Institute», Moscow, Russia
Email: ManukhinVV@mpei.ru

PDF
On the basis of the previously tested model of sputtering binary layered inhomogeneous targets with light ions, a method for calculating the component composition of the surface layers of titanium carbide under stationary (stoichiometric) sputtering with light ions is proposed. The results of calculations of the component composition of the altered surface layer of titanium carbide are given in comparison with experimental data and the results of computer simulation. The proposed method for calculating the component composition based on the model of sputtering binary layered inhomogeneous targets made it possible to estimate the thickness of the changed surface layer. The proposed calculation method allows developing a technology for creating titanium carbide surfaces with a given ratio of components. Keywords: modified surface, layered-heterogeneous surfaces, titanium carbide, partial sputtering coefficient, stationary (stoichiometric) sputtering. DOI: 10.61011/TP.2023.06.56533.52-23
  1. R. Behrisch. Sputtering by Particle Bombardment II: Sputtering of Alloys and Compounds, Electron and Neuron Sputtering, Surface Topography (Springer, NY., 1983)
  2. H. Wiederish. Surface Modification and Alloying (NY., 1983)
  3. Z. Luo, S. Wang. Phys. Rev., B 36, 1885 (1987)
  4. R. Kelly, D.E. Harrison. Mater. Sci. Eng., 69, 449 (1985)
  5. R. Kelly, A. Oliva. Nucl. Instr. Meth., B 13, 283 (1986)
  6. M. Vicanek, J.J. Jimenez-Rodriguez, P. Sigmund. Nucl. Instr. Meth., B 36, 124 (1989)
  7. W. Eckstein, J.P. Biersack. Appl. Phys., A 37, 95 (1985)
  8. P. Varga, E. Taglauer. J. Nucl. Mat., 111/112, 726 (1982)
  9. E. Taglauer, W. Heiland. Proc. Symp. Sputtering (Wien, 1980), p. 423
  10. J. Roth, J. Bohdansky, W. Eckstein. Nucl. Instr. Meth., 128, 751 (1985)
  11. W.L. Patterson, G.A. Shirn. J. Vac. Sci. Technol., 4, 343 (1967)
  12. K. Saiki, H. Tanaka, S. Tanaka. J. Nucl. Mater., 128 \& 129, 744 (1984)
  13. S. Hofmann, Y. Liu, J.Y. Wang, J. Kovac. Appl. Surf. Sci., 314, 942 (2014)
  14. S. Lian, H. Yang, J.J. Terblans, H.C. Swart, J. Wang, C. Xu. Thin Solid Films, 721, 138545 (2021). DOI: 10.1016/j.tsf.2021.138545
  15. S. Berg, I.V. Katardjiev. J. Vacuum Sci. Technol., 17, 1916 (1999). DOI: 10.1116/1.581704
  16. V.V. Manukhin. Prikladnaya fizika, 6 (2018) (in Russian)
  17. V.V. Manukhin. Tech. Phys., 67 (11), 1500 (2022). DOI: 10.21883/TP.2022.11.55182.48-22
  18. V.V. Manukhin. Prikladnaya fizika, 5, 5 (2016) (in Russian)
  19. W. Eckstein. Computer Simulation of Ion-Solid Interaction, Springer Series in Materials Science (Springer, Berlin, Heidelberg, NY., 1991), v. 10

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru