On the Dirac mass of Hubbard fermions in strongly correlated higher-order topological superconductor
Aksenov S. V.1, Fedoseev A. D.1, Shustin M. S.1, Zlotnikov A. O.1
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: asv86@iph.krasn.ru, fad@iph.krasn.ru, mshustin@yandex.ru, zlotn@iph.krasn.ru

PDF
Majorana corner modes have a number of advantages over the conventional Majorana states in terms of performing topologically protected quantum computations. However, the problem of the influence of Coulomb repulsion on higher-order phases, which inevitably arises when trying to implement such systems in practice, has been poorly studied. In this article, we analyze the features of a topological invariant describing the nontrivial phase with the corner modes for a two-dimensional two-orbital model of a hybrid structure in the regime of extremely strong electron correlations. For this purpose, approximate wave functions of the edge states with a linear dispersion law and the associated Dirac masses, which arise when superconducting pairing in the system is taken into account, are obtained. Keywords: topological phases, Dirac fermions, Coulomb interaction, strong correlations, Majorana modes. DOI: 10.61011/PSS.2023.07.56391.31H
  1. A.O. Zlotnikov, M.S. Shustin, A.D. Fedoseev. J. Supercond. Nov. Magn. 34, 3053 (2021)
  2. S.-B. Zhang, W.B. Rui, A. Calzona, S.-J. Choi, A.P. Schnyder, B. Trauzettel. Phys. Rev. Res. 2, 043025 (2020)
  3. S.-B. Zhang, A. Calzona, B. Trauzettel. Phys. Rev. B 102, 100503(R) (2020)
  4. J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, P.W. Brouwer. Phys. Rev. Lett. 119, 246401 (2017)
  5. E. Khalaf. Phys. Rev. B 97, 205136 (2018)
  6. A.D. Fedoseev. Phys. Rev. B 105, 155423 (2022)
  7. H. Li, H.-Y. Kee, Y.B. Kim. Phys. Rev. B 106, 155116 (2022)
  8. W.A. Benalcazar, B.A. Bernevig, T.L. Hughes. Phys. Rev. B 96, 245115 (2017)
  9. W.A. Wheeler, L.K. Wagner, T.L. Hughes. Phys. Rev. B 100, 245135 (2019)
  10. T. Fukui, Y. Hatsugai. Phys. Rev. B 98, 035147 (2018)
  11. Y. You, J. Bibo, F. Pollmann. Phys. Rev. Res. 2, 033192 (2020)
  12. H. Araki, T. Mizoguchi, Y. Hatsugai. Phys. Rev. Res. 2, 012009 (2020)
  13. Q. Wang, C.-C. Liu, Y.-M. Lu, F. Zhang. Phys. Rev. Lett. 121, 186801 (2018)
  14. P.J. Hirschfeld, M.M. Korshunov, I.I. Mazin. Rev. Mod. Phys. 74, 124508 (2011)
  15. S.V. Aksenov, A.D. Fedoseev, M.S. Shustin, A.O. Zlotnikov. Phys. Rev. B 107, 125401 (2023)
  16. Yu.A. Izyumov. Physics--Uspekhi 40, 445 (1997)
  17. V.V. Valkov, S.G. Ovchinnikov. Kvazichastitsy v silno korrelirovannykh sistemakh. SO RAN, Novosibirsk (2001). (in Russian). Hubbard Operators in the Theory of Strongly Correlated Electrons, Imperial College Press, London (2004)
  18. J. Hubbard. Proc. Roy. Soc. A 276, 238 (1963)
  19. P.O. Zaitsev. JETP 43, 574 (1976)
  20. E.V. Kuzmin, S.G. Ovchinnikov. Theoretical and Mathematical Physics 31, 523 (1977)
  21. V.V. Valkov, D.M. Dzebisashvili. JETP 107, 679 (2008)
  22. V.V. Valkov, D.M. Dzebisashvili. Phys. Solid State 51, 877 (2009)
  23. V.V. Valkov, M.M. Korovushkin. JETP 112, 108 (2011)
  24. C. Grober, R. Eder, W. Hanke. Phys. Rev. B 62, 4336 (2000)
  25. R.O. Zaitsev, V.A. Ivanov. FTT, 29, 2554 (1987). (in Russian)
  26. A.V. Rozhkov, A.L. Rakhmanov. J. Phys. Condens. Matter 23, 065601 (2011)
  27. V.V. Valkov, A.O. Zlotnikov. JETP Letters 104, 483 (2016)
  28. V.V. Valkov. JETP Letters 111, 647 (2020).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru