Pressure dependence of phonon populations and non-standard quasiadditive integrals of motion
Dzheparov F. S. 1,2,3
1National Research Center “Kurchatov Institute”, Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
3Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia

The existing equilibrium statistical physics is based on application of standard quasiadditive integrals of motion, which include energy, momentum, rotation momentum, and number of particles. It is shown that this list is far from complete and that any quasiadditive dynamic variable can be mapped to corresponding quasiadditive integral of motion. As a result an ensemble with a given external pressure is constructed. It provides the first example of the distribution in which phonon populations depend on pressure differently than in the canonical Gibbs ensemble. Obtained results indicate the need to continue the studies of phonon populations based on Raman scattering, which were fulfilled earlier in LFTI and initiated this work. Keywords:: Phonon populations, phonon frequencies, quasiharmonic approximation, canonical Gibbs ensemble, ensemble with given pressure, additive integral of motion, Gruneisen factor, Raman scattering. DOI: 10.61011/EOS.2023.04.56353.60-22
  1. L.D. Landau, E.M. Lifshitz. Statisticheskaya fizika (Nauka, M., 1976) (in Russian)
  2. D.N.Zubarev. Nonequilibrium statistical thermodynamics. 1974 Consultants Bureau, New York
  3. R. Kubo. Statistical mechanics. North Holland 1965
  4. I.A. Kvasnikov. Thermodynamics and statistical physics, V. 2: Theory of equilibrium systems: Statistical physics. Moscow: Editorial URSS, 2002 (in Russian)
  5. E.T. Jaynes. Phys. Rev., 106, 620 (1957)
  6. T. Matsoukas. Generalized Statistical Thermodynamics (Springer, 2018)
  7. J.A. Reissland. The physics of phonons. Wiley 1973
  8. N.A.Ashkroft, N.D.Mermin. Solid State Physics. Harcourt College Publishers 1976. (Mir, M., 1979) (in Russian)
  9. A.G. Gurevich. Solid state physics. S-Petersburg: Ioffe PTI, 2004 (in Russian)
  10. V.G. Hamdamov. Investigation of some anharmonic effects in phonon systems of crystals by the method of resonant Raman scattering. Thesis. Leningrad, Ioffe Institute, 1985 (in Russian)
  11. V.G. Hamdamov, V.I. Wettegren, I.I. Novak. Izv. AN UzSSR, ser. fiz.-mat. nauk, 1, 50 (1986) (in Russian)
  12. V.G. Hamdamov, V.I. Vettegren, I.I. Novak. Fizika Tverdogo Tela 26, 322 (1984). Fizika Tverdogo Tela, 26, 322 (1984). (in Russian)
  13. N.N. Bogolyubov, N.N. Bogolyubov Jr. Introduction to quantum statistical mechanics, Moscow: Nauka, 1984 (in Russian)
  14. N.N. Bogolyubov. Problems of dynamical theory in statistical physics. M.-L. GITTL, 1946 (in Russian)
  15. R. Feynman. Statistical mechanics. Benjamin, Massachusetts, 1972
  16. P. Martin, J. Schwinger. Phys. Rev., 115, 1342 (1959)
  17. N.N. Bogolyubov. To the question about hydrodynamics of superfluid liquid. Preprint P-1395. JINR, Dubna, 1963 (in Russian)
  18. F.S. Dzheparov, V.A. Krasnikov. Theoretical and Mathematical Physics, 14, 60 (1973)
  19. J. Philips, M.A. Breazeale. J. Appl. Phys., 54, 752 (1983)
  20. A.F. Goncharov. Sov. Phys. Usp. 30, 525 (1987)
  21. D.S. Kim, O. Hellman, J. Herriman, H.L. Smith, J.Y.Y. Lin, N. Shulumba, J.L. Niedziela, C.W. Li, D.L. Abernathy, B. Fultz. PNAS, 115, 1992 (2018)
  22. F.S. Dzheparov. JETP 89, 753 (1999) JETP 89, 753 (1999)
  23. A. Abragam, M. Goldman. Nuclear Magnetism: Order @ Disorder. Clarendon Press, Oxford 1982

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245