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The existing equilibrium statistical physics is based on application of standard quasiadditive integrals of motion,

which include energy, momentum, rotation momentum, and number of particles. It is shown that this list is far

from complete and that any quasiadditive dynamic variable can be mapped to corresponding quasiadditive integral

of motion. As a result an ensemble with a given external pressure is constructed. It provides the first example of

the distribution in which phonon populations depend on pressure differently than in the canonical Gibbs ensemble.

Obtained results indicate the need to continue the studies of phonon populations based on Raman scattering, which

were fulfilled earlier in LFTI and initiated this work.
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Introduction

Raman light scattering, along with inelastic neutron

scattering, belongs the basic experimental methods for

studying lattice vibrations in crystals. In this case, the most

important part of the knowledge necessary for interpreting

the results obtained is the existing ideas about the equi-

librium distribution of phonons, supplied by equilibrium

statistical physics. They are based on canonical Gibbs

distributions [1–4]. To justify these distributions, a large

system consisting of large subsystems is usually reviewed.

Then from the assumption of quasi-independence of the

subsystems it follows that the statistical operator logarithm

of the system ρ is quasi-additive with respect to the

logarithms of the statistical operators of the subsystems ρa :

ln ρ =
∑

a

lnρa . (1)

This equality is valid when surface effects are neglected.

It immediately results in the canonical Gibbs distributions,

since it is assumed that all quasi-additive integrals of motion

are exhausted by the total energy, the total number of

particles, and the total values of momentum and angular

momentum.

The informational view on the problem [2,5,6] is based

on the quasi-additivity and maximality of the entropy of the

equilibrium distribution. It leads to the same conclusions

because it uses the same integrals Iµ of motion to impose

the conditions

〈Iµ〉 = TrIµρ = I(ex)
µ , (2)

limiting the variation of δρ in the search for the maximum

entropy

S = −〈ln ρ〉. (3)

As a result,

ρ = exp
(

−

ν
∑

µ=1

AµIµ
)

, (4)

where ν — the number of conditions (2) that serve as

equations for determining the Lagrangian factors Aµ for a

given set of values {I(ex)
µ }. The maximum of entropy realizes

the distribution corresponding to the presence of a minimum

of information about the system under conditions (2).

To describe many phenomena associated with the anhar-

monicity of lattice vibrations, the so-called quasi-harmonic

approximation is sufficient, in which the vibrations remain

small, but their frequencies depend on the volume of the

crystal and, accordingly, on the external pressure P(ex).

Meanwhile, the dependence of the average occupation

numbers (populations) of nk = 〈c+
k ck〉 phonons on P(ex)

manifests itself only through the pressure dependence of

the phonon frequencies ωk(P(ex)) [7–9]. Under these

conditions, one of the consequences of the equivalence of

Gibbs ensembles [1–4] for non-small systems is that

nk = n(0)
k (P(ex)) =

[

exp(βωk(P
(ex))) − 1

]−1

. (5)

Here β = 1/T — the inverse temperature, and c+
k and ck —

the phonon creation and annihilation operators in the state

with condition number k
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A direct measurement of the dependence nk(P(ex)) was

undertaken in [10,11] based on a comparison of the inten-

sities of the Stokes and anti-Stokes components in Raman

light scattering. These papers continued the study [12] of

Raman light scattering in strained crystalline silicon plates.

Their results are much better described by the relation

nk(P
(ex)) =

{

exp
[

β(ωk(P
(ex)) + 1k(P

(ex)))
]

− 1
}−1

, (6)

where

1k(P
(ex)) = ωk(P

(ex)) − ωk(0),

than by the formula (5). Naturally, the measurements were

carried out at 1k(P(ex)) ≪ ωk(P(ex)).
This conclusion was obtained by a highly qualified team

in one of the largest physical centers. Nevertheless, it did

not attract wide attention of researchers, apparently because

it did not receive a convincing theoretical justification.

Existing statistical physics does not offer anything except

the relation (5).
Let us note that the actual measurement [10,11] was

carried out under somewhat more complex conditions than

isotropic tension or compression, but we restrict ourselves

here to only this case in order to highlight the most

important conceptual part of the problem.

In this paper, it is shown that the list of quasi-additive

integrals of motion is far from exhausted by the above

standard dynamic variables, and on this basis a new

statistical operator is constructed that ensures the fulfillment

of an additional condition imposed on the pressure in

the system. It results for the first time in other phonon

populations than canonical Gibbs distributions.

The new statistical operator does not coincide with the

known P−T -distribution (see, for example, item 9.6 in [2],
Ch. 1, §13 in [3] or problem 11 on page 91 in [4]), which

corresponds to the inclusion in (2) of an additional condition

not on the pressure, but on the volume of the system [2].
P−T -distribution for large systems is equivalent to the usual

canonical distribution.

1. Pressure as a dynamic variable and
an ensemble with a given pressure

We will relate the quasi-additive dynamic variable

Q(p, q) = −
1

d
∂

∂λ
H(p/λ, qλ)|λ=1. (7)

to the pressure. Here H(p, q) — Hamiltonian of the system,

d — its spatial dimension, p and q denote the totality of all

momenta and coordinates, and the numerical parameter λ is

assumed to be equal to one after calculating the derivative

∂/∂λ. This choice is due both to the general statement [1]
that the pressure is determined by the relation

p(ex) = −

〈

∂H
∂V

〉

,

and to the fact that in the canonical ensemble the mean

pressure is

p(ex) = −

〈

∂H
∂V

〉

= −
∂F(β,V )

∂V

=
1

V

∑

n

〈n|Q|n〉 exp
(

−β(F − 〈n|H|n〉)
)

=
〈Q〉

V
. (8)

Here F — free energy, and the vectors |n〉 are eigenstates

for the Hamiltonian H . A similar relation is also valid in

the grand canonical ensemble. A fairly complete derivation

of the relation (7) can be found in the papers [2,13–
15]. It is a specification of the calculation of the operator

∂H/∂V in case when the total Hamiltonian of the system

is Htot = H(p, q) + Ub(q/L), where the term Ub(q/L)
describes the influence of the boundary, the volume of the

system is V ∼ Ld , and H(p, q) does not contain an explicit

dependence on V in the coordinate representation.

In a standard three-dimensional dynamical system with

the Hamiltonian

H(p, q) =
N

∑

j=1

p2
j

2m
+

1

2

∑

i 6= j

8(qi − q j), (9)

where N is the number of particles in the system, m is the

particle mass, and 8(qi − q j) is the interparticle interaction

energy, we have ’

Q(p, q) =
1

3

[

2

N
∑

j=1

p2
j

2m
−

1

2

∑

i 6= j

qi j∂8(qi j)/∂qi j

]

. (10)

Analyzing the time dependence of the densities of

standard quasi-additive integrals of motion also leads to the

similar representations for pressure [14,16–18].
Let us note that only the diagonal elements 〈n|Q|n〉

appear in (8).
With a sufficiently rapid decrease in the interaction 8(qi j)

with an increase in qi j = qi − q j , the operator Q(p, q) is

quasi-additive, as is the Hamiltonian (9). Accordingly, its

diagonal part

QD =
∑

n

|n〉〈n|Q|n〉〈n| (11)

is also quasi-additive and, unlike Q(p, q), is an integral of

motion. Indeed, let the system consist of two parts, and

neglecting the interaction on the boundary

H(p, q) = H1(p1, q1) + H2(p2, q2),

Q(p, q) = Q1(p1, q1) + Q2(p2, q2).

Here (pa , qa) — the set of impulses and coordinates of the

a -th subsystem. Accordingly, |n〉 = |n1〉|n2〉, where |na〉 —
eigenvector of the Hamiltonian Ha(pa , qa). Therefore,

QD =
∑

n

|n〉〈n|Q|n〉〈n| =
∑

n1

|n1〉〈n1|Q1|n1〉〈n1|

+
∑

n2

|n2〉〈n2|Q2|n2〉〈n2| = Q1D + Q2D,
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which proves the quasi-additivity QD .

Therefore, the statistical operator

ρ = exp
[

β(G − H − τ QD)
]

(12)

is an integral of motion and represents an equilibrium

distribution that satisfies requirement (1) and additional

conditions

〈H〉 = E, 〈Q〉 = Q(ex), 〈1〉 = 1, (13a)

from which β, τ and G(β, τ ) are determined. Here

Q(ex) = P(ex)V (ex), and V (ex) — average volume.

Obviously,〈QD〉 = 〈Q〉.
In the distribution (12), we have written the exponent

in the
”
standard“ form [1–4], when the thermodynamic

parameter τ appears as a factor for the quasi-additive

integral of motion QD . In the nature of things, other

representations are also possible, and the choice among

them is currently not limited by anything, except for

the condition of maximum entropy when the imposed

conditions (13) are satisfied. So, for example, instead of the

conditions on the energy and the pressure representative 〈Q〉
from (13), the conditions on the density of these quantities

can be used:

〈H/V 〉 = ε, 〈Q/V 〉 = P(ex). (13b)

The equivalence of the distributions corresponding to

conditions (13a) and (13b) becomes apparent after passing

to the density matrix ρ1 introduced below by formula (21)
in section 3.

Let us note that relation (12) is also valid in the classical

theory for

QD(p, q) = lim
ϑ→∞

ϑ
∫

−ϑ

dt
2ϑ

Q
(

pc(t), qc(t)
)

,

where pc(t) and qc(t) represent the classical trajectory with

the initial condition

pc(t = 0) = p, qc(t = 0) = q.

2. Equilibrium statistical operators with
nonstandard quasi-additive integrals
of motion

The method of constructing the quasi-additive integral of

motion QD formulated above is completely general and is

not tied to a specific representation (10). It allows for any

quasi-additive dynamical variable Q(µ)(p, q) to construct a

quasi-additive integral of motion Q(µ)
D , which is the diagonal

part of Q(µ)(p, q). The new quasi-additive integrals of

motion thus obtained can be further included in the list Iµ
for constructing new statistical operators according to the

rule (4).

3. Phonon occupation numbers in the
presence of constant external
pressure

Let us consider a crystal consisting of atoms of the

same type. We write the corresponding lattice Hamiltonian

as [1] in the approximation quadratic in displacements

uns of atoms from their average positions rns in the cell

numbered n:

H(p, u,V ) =
∑

ns

p2
ns

2m

+
1

2

∑

nn′ss ′

3
αβ
ss ′(n− n′,V )uα

ns uβ
n′s ′ + U0(V ). (14)

Here, the index s enumerates the atoms in the elementary

cell, while α and β enumerate the Cartesian components.

In (14), in contrast to (9), and due to the application

of the harmonic approximation, the energy of the mean

position U0(V ) and coefficients 3
αβ
ss ′(n− n′,V ) appeared,

which explicitly depend on the volume V . Taking this into

account the relation

Q(p, u,V ) = −

(

1

d
∂

∂λ
+ V

∂

∂V

)

H(p/λ, uλ,V )|λ=1

=
2

d

[

∑

ns

p2
ns

2m
−

1

2

∑

nn′ss ′

3
αβ
ss ′(n− n′,V )uα

ns uβ
n′s ′

]

−
1

2

∑

nn′ss ′

∂3
αβ
ss ′(n− n′,V )

∂ lnV
uα
ns uβ

n′s ′ −
∂U0(V )

∂ lnV
. (15)

is obtained instead of (7) and (10).
When written using the operators of creation c+

k and an-

nihilation ck of phonons in the state k , the Hamiltonian (14)
becomes

H =
∑

k

ωk(c
+
k ck + 1/2) + U0(V ). (16)

The Q operator in this representation looks much more

complicated, mainly due to the member associated with

∂3/∂ lnV , which generates interzone transitions. But the

diagonal part (11) is simple:

QD = −
∂

∂ lnV

(

U0(V ) +
1

2

∑

k

ωk

)

−
∑

k

∂ωk

∂ lnV
c+

k ck .

(17)
The results obtained in [7–9] for pressure within the

canonical ensemble lead to the same form for QD .

From relations (12), (16) and (17) it naturally follows

that

nk =
{

exp
[

β(ωk − τ ∂ωk/∂ lnV )
]

− 1
}−1

. (18)

Here V = V0(P(ex)). The method for calculating this value

is described below.
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Calculations with the statistical operator (12), as well as

calculations in the P−T ensemble, include integration over

the volume of the system V . For instance,

exp(−βG) = �−1

∫

Ṽ

dVTr exp[−β(H + τ QD)], (19)

where the formal parameter � with the dimension of

volume is introduced so that the distribution (12) is di-

mensionless, and the region of integration over volume Ṽ is

concentrated near the point V0 indicated below. In standard

calculations of such quantities as G, 〈H〉, P = 〈Q/V 〉 and

nk it is natural to calculate this integral after calculating the

trace over other degrees of freedom. Meanwhile (as in the

P−T ensemble), the result for large systems is determined

by the presence of a sharp maximum in V near some value

of V0, and the relative width of this maximum is small in

the parameter N−1/2, where N — the number of particles in

the system. Therefore, according to the rules of saddle point

method, the value of V = V0 is determined by the equation

∂

∂V
ln Tr exp[−β(H + τ Q0)] = β

(

P1 − τ

〈

∂QD

∂V

〉

1

)

= 0.

(20)
Here P1 = −〈∂H/∂V 〉1, 〈B〉1 = TrBρ1 for any operator B ,

and

ρ1 = exp
[

−β(H + τ QD
]

/Tr exp
[

−β(H + τ QD)
]

. (21)

Taking into account (13) we have P1 = P(ex). Therefore,

for P(ex) = 0, from (20) follows τ = 0, and the distribu-

tions (12) and (21) are reduced to the canonical one with

volume V = V0 = VT , where VT — the usual equilibrium

volume in the absence of external pressure. In general case,

τ and V0 are defined by a pair of relations

P1(V, τ ) = P(ex), τ 〈∂QD/∂V 〉1 = P(ex). (22)

The ground experimental data of the papers [9,10] refer
to deformations much larger than the thermal change in the

cell parameter associated with the last term in (17) [7–9].
Therefore, when calculating τ , this term can be neglected.

In the result

τ = P(ex)/

〈

∂QD

∂V0

〉

1

≈ P(ex)/
∂(V0P(ex))

∂V0

≈ V−1
T (V0 −VT ).

(23)
Here it is taken into account that (V0 −VT )/VT ≪ 1 and

V0 −VT are linear in P(ex). Now, substitution (23)
into (18) together with taking into account the rel-

ative smallness of the change in phonon frequencies

ωk(P(ex)) − ωk(0) ≪ ωk(P(ex)) leads to

nk(P
(ex)) =

{

exp
[

β(ωk(P
(ex)) − 1k(P

(ex))
]

− 1
}−1

≈
{

exp
[

β(ωk(P
(ex) = 0))

]

− 1
}−1

. (24)

4. Temperature

The question of the relationship between the parame-

ters β and τ introduced in (12) and the standard ther-

modynamic temperature Tt = 1/βt requires a special study.

We will not give here a complete solution of this problem,

but we hope that the material presented below forms an

important part of it.

It is known that in case of a three-dimensional (d = 3)
ideal gas, the pressure operator is proportional to the Hamil-

tonian: P = 2H/(3V ). In this case, formula (12) coincides

with the usual canonical distribution and βt = β(1 + 2τ /3).
The distribution (12) is no longer reduced to those known

earlier for phonon systems. Therefore, we first overview

the classical limit, when it is natural to expect that the

temperature is determined by the average value of the

kinetic energy per vibrating atom:

〈 N
∑

j=1

p2
j/2m

〉

/N = 3Tt/2.

A simple calculation in this case gives

βt = β(1 + τ γc
eff). (25)

Here the effective Gruneisen parameter γc
eff is introduced,

which is related to the mode [7,8] Gruneisen parameters

γk = −∂ lnωk/∂ lnV by the relation

(1 + τ γc
eff)

−1 =
∑

k

(1 + τ γk)
−1/(3N). (26)

In the general situation, it is natural to consider a

separate macroscopic subsystem with known properties as

a thermometer. Let the thermometer be an ideal gas with a

given volume Vt , Hamiltonian Ht and temperature Tt , which

is in equilibrium with the crystal described by the density

matrix (21). Let us consider the evolution of the system

when the weak interaction H1 between the thermometer

and the crystal is switched on. Let us assume that initially,

at t = 0, the density matrix of the system consisting of a

sample and a thermometer has the form

ρg = ρ1(β, τ )ρt(βt,Vt), (27)

where ρ1(β, τ ) is defined by relation (21). From the

standard theory of linear reaction [2] it follows that the rate

of change of thermometer energy is

∂

∂t

〈

Ht(t)

〉

=

∞
∫

0

dt′Tr[H1(t
′), Ht ][H1, ρg ]. (28)

Here H1(t) = exp(iHgt)H1 exp(−iHgt), and the

Hamiltonian Hg = H + Ht . The relation (28) is

valid at the beginning of the evolution, when

|〈Ht(t)〉 − 〈Ht(0)〉| ≪ |〈Ht(0)〉|, but t > τc , where τc —
the decay time of the integrand. Let us rewrite (28)
using the eigenvectors |ng〉 = |n〉|nt〉 and the eigenvalues
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Eng = En + Etn of the Hamiltonian Hg , constructed from

the eigenvectors and values of the Hamiltonians H and Ht .

Meanwhile,

∂

∂t

〈

Ht

〉

=
∑

ng mg

πδ(Egn − Egm)|〈ng |H1|mg〉|
2(Emt − Ent )

×
{

1− exp
[

−(βt − β)(En − Em) + βτ (QDn − QDm)
]

}

ρgn.

(29)
Here

ρgn = exp(−β(En + τ QDn) − βtEnt)/

Tr exp(−β(H + τ QD) − βtHt)

is the eigenvalue of the density matrix ρg on the vector

|ng〉 = |n〉|nt〉.

It is natural to expect that when the thermometer is in

equilibrium with the crystal

∂〈Ht(t)〉/∂t = 0. (30)

If τ = 0, then this condition is satisfied for β = βt

regardless of the explicit form of H1, as it should be in

the canonical ensemble. In general case, condition (30) is

an equation for β = β(βt, τ ), the solution of which depends

on H1.

Let us show that there is a natural approximation for

this solution, which does not depend on H1. Let us

place H = H(el) + H(ph) and QD = Q(el)
D + Q(ph)

D . Here,

the phonon parts H(ph) and Q(ph)
D include terms that are

quadratic in the operators c+
k and ck , while the elastic parts

H(el) and Q(el)
D do not contain operators. Obviously, both

the density matrix ρ1 and the right side in (29) do not

depend on H(el) and Q(el)
D , because their contributions to the

numerator and denominator from (21) cancel out. Similarly,

we can place

ρ1 = exp
[

−β
(

(1 + τ u)H(ph) + τ (1Q(ph)
D − u1H(ph))

)

]

/Z,

(31)
where 1B = B − 〈B〉1, and Z — normalization factor.

Parameter u will be chosen in such a way as to minimize

8 =
〈

(1Q(ph)
D − u1H(ph))2

〉

1
.

Meanwhile,

u =
〈

(1Q(ph)
D 1H(ph)

〉

1
/
〈

(1H(ph))2
〉

1
. (32)

Now, in the leading order in 1Q(ph)
D − u1H(ph), we obtain

ρ1 = exp[−β(1 + τ u)H(ph)]/Z,

and equation (30) has a solution

β = βt/(1 + uτ ), (33)

not depending on H1. Calculation by formulas (32) and (31)
leads to

u =
∑

k

γkω
2
k nk(nk + 1)/

∑

k

ω2
k nk(nk + 1). (34)

Here,

nk =
{

exp[β(1 + τ γk)ωk ] − 1
}−1

as in (18). As a rule |γk | ∼ 1 [7,8]. To reveal in nk effects of

the main order by τ ≪ 1 in nk , it is enough to place τ = 0

in (34). In this limit u coincides with the so-called total

Gruneisen parameter γ (see formula (25.19) from [8]), for
which there are many numerical estimates in the literature .

Apparently, the value of γ ≈ 0.5 given in [19] for silicon at

room temperature and P(ex) = 0 did not undergo significant

changes in subsequent papers [20,21].
In the classical limit u = γc

eff(1 + Q(τ )). Moreover,

relations (31) and (25) are equivalent.

Analyzing the thermodynamic relations following directly

from the distribution (12) also leads to similar conclusions.

It is easy to check that

∂G
∂β

=
S
β2

,
∂G
∂τ

= 〈Q〉 = Q(ex), (35)

i.e.

dG = −SdT + Q(ex)dτ . (36)

Hence, taking into account that

E = 〈H〉 = G − τ Q(ex) + T S,

dE =

(

T − τ

(

∂Q(ex)

∂S

)

V

)

dS − τ

(

∂Q(ex)

∂V

)

S

dV. (37)

is obtained. Let’s compare this expression with the standard

thermodynamic relation

dE = TtdSt − pdV. (38)

Here Tt and St — standard thermodynamic temperature and

entropy respectively. Relations (37) and (38) will match if

τ

(

∂Q(ex)

∂V

)

S

= p. (39)

Then it can be assumed that S = St , and

Tt = T − τ

(

∂Q(ex)

∂S

)

V

. (40)

Comparison of relations (22) and (39) shows that (39) is

performed at least in the leading order in τ . With the same

accuracy, relation (40) reduces to (34).

5. Conclusions

The construction of a new ensemble carried out in the

present work essentially uses the possibility of explicitly

constructing a new quasi-additive integral of motion based

Optics and Spectroscopy, 2023, Vol. 131, No. 4



Pressure dependence of phonon populations and non-standard quasiadditive integrals... 445

on the presence of a phonon representation for crystal

vibrations. Apparently, it can be easily generalized to any

other objects in which the Hamiltonian of free quasiparticles

is a good approximation, for example, to magnon systems.

In a more general situation, the problem may turn out to be

as difficult as the ergodic problem.

The resulting new dependence of phonon occupation

numbers on external pressure (24) differs significantly from

that for previously known Gibbs ensembles (5), but does
not agree with the results (6) of the experiment [10,11]
even with allowance for temperature redefinition , which

was discussed in Section 4. This indicates the need for

further experimental and theoretical studies. In particular, it

becomes much more important to study the correspondence

between the experiment and the ensemble compared to it.

Let us note that, along with optical and magnetic resonance

methods for measuring phonon and magnon populations, it

is also desirable to use inelastic neutron scattering, since in

this case the influence of effects such as a narrow phonon

throat is minimized.

At present, in the absence of ergodic theorems, the

kinetic equations are usually formulated in such a way that

their equilibrium solutions coincide with the results of the

equilibrium theory. Actually, this requirement is purely

phenomenological, and an example of how a consistent

theory can be in conflict with it is given in [22]. Therefore,
the extension of the class of admissible equilibrium states

revealed in this paper, which arises when nontraditional

quasi-additive integrals of motion are taken into account,

should lead to a modification of not only equilibrium, but

also nonequilibrium statistical physics. First of all, this

may refer to problems in the theory of destruction of

materials. The papers [10–12] were directed to them and

stimulated the present study. To apply our results in the

general theory of kinetic equations, the problem of finding

convenient representations for the densities of non-standard

quasi-additive integrals of motion, which could be used

along with standard densities in constructing, for example, a

description of the hydrodynamic stage of evolution, should

be among the first to be solved.

Let us note that the discovery of a new quasi-additive

integral of motion in the quasi-harmonic approximation

does not yet mean that it will appear in the completely

equilibrium density matrix of the system. For a theoretical

solution of such a question, it would be necessary to prove

the corresponding ergodic theorem. But the new integral

is at least important in quasi-equilibrium distributions that

describe the system at the stage of approaching full equilib-

rium. Examples of such situations are well known. Thus, in

many problems of the dynamics of isolated spin systems,

most of the evolution and many effects are described

under the assumption that there is an equilibrium inside

the Zeeman and dipole subsystems, each of which has its

own temperature, and their Hamiltonians are integrals of

motion, neglecting the nonsecular terms of dipole-dipole

interactions [23]. Meanwhile, there is no doubt that the

complete equilibrium of an isolated spin system corresponds

to a canonical distribution with one temperature and with a

total Hamiltonian that is an exact integral of motion.
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