Pyroelectric effect in doped nonpolar glycine crystals
G.U. Sotnikova1, P.S. Zelenovskiy2, A.D. Ushakov2, G. A. Gavrilov1, V. Shur2, A.L. Kholkin2
1Ioffe Institute, St. Petersburg, Russia
2Institute of Natural Sciences, Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: kholkin@urfu.ru

PDF
Doping-induced local symmetry breaking of centrosymmetric molecular crystals endows them with piezoelectric and pyroelectric properties. In this work, we measured temperature dependences of pyroelectric and piezoelectric coefficients in α-glycine crystals single-doped by threonine and double-doped by threonine and alanine. We analyzed primary and secondary pyroelectric effects in these crystals and suggested a model of the dopant complexes related to the observed effects. Keywords: pyroelectricity, α-glycine, doped molecular crystals.
  1. J.F. Nye. Physical Properties of Crystals (Clarendon Press, 1957)
  2. S.B. Lang. Phys. Today, 58 (8), 31 (2005). DOI: 10.1063/1.2062916
  3. I. Lubomirsky, O. Stafsudd. Rev. Sci. Instrum., 83, 051101 (2012). DOI: 10.1063/1.4709621
  4. A. Thakre, A. Kumar, H.-C. Song, D.-Y. Jeong, J. Ryu. Sensors, 19, 2170 (2019). DOI: 10.3390/s19092170
  5. S. Korkmaz, I.A. Kariper. Nano Energy, 84, 105888 (2021). DOI: 10.1016/j.nanoen.2021.105888
  6. H. Ryu, S.-W. Kim. Small, 17, 1903469 (2021). DOI: 10.1002/smll.201903469
  7. H. He, X. Lu, E. Hanc, C. Chen, H. Zhang, L. Lu. J. Mater. Chem. C, 8, 1494 (2020). DOI: 10.1039/c9tc05222d
  8. A.S. Bhalla, R.E. Newnham. Phys. Status Solidi A, 58, K19-K24 (1980). DOI: 10.1002/pssa.2210580146
  9. W. Xusheng. Ferroelectr. Lett. Sect., 12, 115 (1991). DOI: 10.1080/07315179108201147
  10. S. Dishon, A. Ushakov, A. Nuraeva, D. Ehre, M. Lahav, V. Shur, A. Kholkin, I. Lubomirsky. Materials, 13, 4663 (2020). DOI: 10.3390/ma13204663
  11. K.L. Acosta, S. Srivastava, W.K. Wilkie, D.J. Inman. Compos. B Eng., 177, 107275 (2019). DOI: 10.1016/j.compositesb.2019.107275
  12. C.-P. Ye, T. Tamagawa, D.L. Polla. J. Appl. Phys., 70, 5538 (1991). DOI: 10.1063/1.350212
  13. G. Velarde, S. Pandya, L. Zhang, D. Garcia, E. Lupi, R. Gao, J.D. Wilbur, C. Dames, L.W. Martin. ACS Appl. Mater. Interf., 11, 35146 (2019). DOI: 10.1021/acsami.9b12191
  14. E. Meirzadeh, I. Azuri, Y. Qi, D. Ehre, A.M. Rappe, M. Lahav, L. Kronik, I. Lubomirsky. Nature Commun., 7, 13351 (2016). DOI: 10.1038/ncomms13351
  15. H.V. Alexandru. Ann. NY. Acad. Sci., 1161, 387 (2009). DOI: 10.1111/j.1749-6632.2008.04080.x
  16. R.B. Lal, A.K. Batra. Ferroelectrics, 142, 51 (1993). DOI: 10.1080/00150199308237884
  17. H.V. Alexandru, C. Berbecaru, F. Stanculescu, L. Pintilie, I. Matei, M. Lisca. Sens. Actuat. A, 113, 387 (2004). DOI: 10.1016/j.sna.2004.03.046
  18. M. Lusi. Cryst. Eng. Commun., 20, 7042 (2018). DOI: 10.1039/C8CE00691A
  19. Z. Qin, C. Gao, W.W.H. Wong, M.K. Riede, T. Wang, H. Dong, Y. Zhena, W. Hu. J. Mater. Chem. C, 8, 14996 (2020). DOI: 10.1039/D0TC02746D
  20. M.S. Cedric. Physical properties of crystals of the triglycine sulfate family (Science and Technology, Minsk, 1986)
  21. V.Yu. Torbeev, E. Shavit, I. Weissbuch, L. Leiserowitz, M. Lahav. Cryst. Growth Des., 5, 2190 (2005). DOI: 10.1021/cg050200s
  22. G.Yu. Sotnikova, G.A. Gavrilov, A.A. Kapralov, K.L. Muratikov, E.P. Smirnova. Rev. Sci. Instrum., 91, 015119 (2020). DOI: 10.1063/1.5108639
  23. E. Mishuk, A. Ushakov, E. Makagon, S.R. Cohen, E. Wachtel, T. Paul, Y. Tsur, V.Y. Shur, A. Kholkin, I. Lubomirsky. Adv. Mater. Interf., 6, 1801592 (2019). DOI: 10.1002/admi.201801592
  24. E. Mishuk, A.D. Ushakov, S.R. Cohen, V.Y. Shur, A.L. Kholkin, I. Lubomirsky. Sol. State Ion., 327, 47 (2018). DOI: 10.1016/j.ssi.2018.10.012
  25. A.D. Ushakov, N. Yavo, E. Mishuk, I. Lubomirsky, V.Y. Shur, A.L. Kholkin. KnE Mater. Sci., 2016, 177 (2016). DOI: 10.18502/kms.v1i1.582
  26. P.K. Bajpai, A.L. Verma. Spectrochim. Acta A, 96, 906 (2012). DOI: 10.1016/j.saa.2012.06.007
  27. P. Langan, S.A. Mason, D. Mylesc, B.P. Schoenborn. Acta Cryst. B, 58, 728 (2002). DOI: 10.1107/S0108768102004263
  28. I. Azuri, E. Meirzadeh, D. Ehre, S.R. Cohen, A.M. Rappe, M. Lahav, I. Lubomirsky, L. Kronik. Angew. Chem. Int. Ed., 54, 13566 (2015). DOI: 10.1002/anie.201505813
  29. A. Gavezzotti. Acc. Chem. Res., 27, 309 (1994). DOI: 10.1021/ar00046a004
  30. A. Gavezzotti, G. Filippini. J. Phys. Chem., 98, 4831 (1994). DOI: 10.1021/j100069a010
  31. A. Gavezzotti. Crystallogr. Rev., 7, 5 (1998). DOI: 10.1080/08893119808035402
  32. P.R. Edgington, P. Mc Cabe, C.F. Macrae, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J. van de Streek. J. Appl. Crystallogr., 39, 453 (2006). DOI: 10.1107/S002188980600731X

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru