Simulation of polycrystalline beryllium sputtering by H, D, T atoms
Babenko P. Yu.1, Mikhailov V. S. 1, Shergin A. P.1, Zinoviev A. N. 1
1Ioffe Institute, St. Petersburg, Russia
Email: zinoviev@inprof.ioffe.ru

PDF
The results of modeling the sputtering coefficients of polycrystalline beryllium by hydrogen isotopes in the range of collision energies of 8 eV-100 keV and their dependences on the angle of incidence of the beam on the surface are presented. This data is necessary for estimating the sputtering of the first wall in the ITER tokamak made from beryllium. A strong surface shape influence on obtained results is shown. The limiting cases of a flat potential barrier (smooth surface) and a spherical potential barrier (a surface consisting of spikes) are considered. The effect of collision cascades on the sputtering coefficient has been established. The dependences of the average depth of sputtered particle formation on the bombarding particles energy are obtained for various angles of beam incidence on the target. The energy spectra and angular dependences of the ejection of sputtered particles are calculated for different energies of bombarding beam atoms. It is shown that the presence of an attractive well in the potential of an incident particle surface changes the sputtering coefficient dependence on incidence angle at small glancing angles. Keywords: Sputtering coefficients, energy and angular distributions of sputtered particles, interatomic potential, hydrogen isotopes, beryllium.
  1. K. Schmid. Nucl. Fusion, 48 (10), 105004 (2008). DOI: 10.1088/0029-5515/48/10/105004
  2. A.S. Kukushkin, H.D. Pacher, V. Kotov, G.W. Pacher, D. Reiter. Fusion Eng. Des., 86 (12), 2865 (2011). DOI: 10.1016/j.fusengdes.2011.06.009
  3. P.Yu. Babenko, M.I. Mironov, V.S. Mikhailov, A.N. Zinoviev. Plasma Phys. Control. Fusion, 62 (4), 045020 (2020). DOI: 10.1088/1361-6587/ab7943
  4. R. Behrisch, W. Eckstein. Sputtering by Particle Bombardment (Springer, Berlin, 2007), DOI: 10.1007/978-3-540-44502-9
  5. R.E.H. Clark. Atomic and Plasma-Material Interaction Data for Fusion (IAEA, Vienna, 2001), v. 7, Part B
  6. W.D. Wilson, L.G. Haggmark, J.P. Biersack. Phys. Rev. B, 15 (5), 2458 (1977). DOI: 10.1103/PhysRevB.15.2458
  7. E. Salonen, K. Nordlund, J. Keinonen, C.H. Wu. J. Nucl. Mater., 313- 316, 404 (2003). DOI: 10.1016/S0022-3115(02)01397-1
  8. K. Nordlund, C. Bjorkas, K. Vortler, A. Meinander, A. Lasa, M. Mehine, A.V. Krasheninnikov. Nucl. Instr. Meth. B, 269 (11), 1257 (2011). DOI: 10.1016/j.nimb.2010.12.080
  9. M.I. Airila, C. Bjorkas, A. Lasa, A. Meinander, K. Nordlund, K. Vortler. J. Nucl. Mater., 438, S589 (2013). DOI: 10.1016/j.jnucmat.2013.01.123
  10. X. Yang, A. Hassanein. Appl. Surf. Sci., 293, 187 (2014). DOI: 10.1016/j.apsusc.2013.12.129
  11. D.S. Meluzova, P.Yu. Babenko, A.N. Zinoviev, A.P. Shergin. Pisma v ZhTF, 46 (24), 19 (2020) (in Russian). DOI: 10.21883/PJTF.2020.24.50422.18487
  12. A. Lopez-Cazalilla, J. Jussila, K. Nordlund, F. Granberg. Comput. Mater. Sci., 216, 111876 (2023). DOI: 10.1016/j.commatsci.2022.111876
  13. C. Bjorkas, K. Nordlund, S. Dudarev. Nucl. Instr. Meth. B, 267 (18), 3204 (2009). DOI: 10.1016/j.nimb.2009.06.123
  14. X.-C. Li, X. Shu, Y.-N. Liu, Y. Yua, F. Gao, G.-H. Lu. J. Nucl. Mater., 426 (1-3), 31 (2012). DOI: 10.1016/j.jnucmat.2012.03.039
  15. M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, F. Willaime. J. Phys. Condens. Matter., 25, 395502 (2013). DOI: 10.1088/0953-8984/25/39/395502
  16. A.E. Sand, J. Dequeker, C.S. Becquart, C. Domain, K. Nordlund. J. Nucl. Mater., 470, 119 (2016). DOI: 10.1016/j.jnucmat.2015.12.012
  17. P.Yu. Babenko, V.S. Mikhailov, A.N. Zinoviev. Pisma v ZhTF (2023) (in Russian)
  18. W. Eckstein, Computer Simulation of Ion--Solid Interactions (Springer, 1991)
  19. P.Yu. Babenko, A.N. Zinoviev, V.S. Mikhailov, D.S. Tensin, A.P. Shergin, Pisma v ZhTF, 48, 10 (2022). (in Russian). DOI: 10.21883/PJTF.2022.14.52862.19231
  20. D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, K. Nordlund, A.N. Zinoviev. Nucl. Instr. Meth. B, 460, 4 (2019). DOI: 10.1016/j.nimb.2019.03.037
  21. P.Yu. Babenko, A.N. Zinoviev, D.S. Tensin. ZhTF, 92 (11), 1643 (2022) (in Russian). DOI: 10.21883/JTF.2022.11.53436.151-22
  22. A.N. Zinoviev, P.Yu. Babenko, K. Nordlund. Nucl. Instr. Meth. B, 508, 10 (2021). DOI: 10.1016/j.nimb.2021.10.001
  23. A.N. Zinoviev, K. Nordlund. Nucl. Instr. Meth. B, 406, 511 (2017). DOI: 10.1016/j.nimb.2017.03.047
  24. C. Bjorkas, N. Juslin, H. Timko, K. Vortler, K. Nordlund, K. Henriksson, P. Erhart. J. Phys.: Condens. Matter., 21, 445002 (2009). DOI: 10.1088/0953-8984/21/44/445002
  25. M.V. Prokof'ev, V.V. Svetukhin, M.Yu. Tikhonchev. Izv. of the Samara NTs RAN, 15, 1024 (2013) (in Russian)
  26. B.P. Nikol'skii, Spravochnik khimika (Khimiya, L., 1966) (in Russian)
  27. Y.R. Luo. Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007)
  28. D. Primetzhofer, S. Rund, D. Roth, D. Goebl, P. Bauer. Phys. Rev. Lett., 107, 163201 (2011). DOI: 10.1103/PhysRevLett.107.163201
  29. A. Mann, W. Brandt. Phys. Rev. B, 24, 4999 (1981). DOI: 10.1103/PhysRevB.24.4999
  30. J.F. Ziegler, J.P. Biersack. SRIM. http://www.srim.org
  31. P. Sigmund. Phys. Rev., 184, 383 (1969). DOI: 10.1103/PhysRev.184.383
  32. P.Yu. Babenko, M.I. Mironov, V.S. Mikhailov, A.N. Zinoviev. Plasma Phys. Control. Fusion, 62, 045020 (2020). DOI: 10.1088/1361-6587/ab7943

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru