Propagation of supersonic soliton in carbon nanotubes of armchair type
Shunaev V. V. 1, Chetverikov A.P. 1, Glukhova O. E. 1
1 Department of Physics, Saratov Chernyshevsky State University, Saratov, Russia
Email: vshunaev@list.ru, glukhovaoe@info.sgu.ru

PDF
The propagation of a localized ring nonlinear wave in carbon nanotubes (CNTs) of armchair type has been explored using the MD/DFTB method. It is unambiguously shown that the considered localized waves are soliton-type. Herewith, the higher a velocity of an initial perturbation, the higher a steady-state velocity of the considered soliton. It is established that at a high initial excitation energy in a time period of 0.1-0.2 ps the soliton moves at the speed in the range of 245-270 Angstrem/ps, which is approximately in 1.22-1.35 times higher than the speed of sound in CNTs (200 Angstrem/ps). It is shown that the soliton velocity practically does not change with increasing CNT radius Keywords: molecular dynamics, carbon nanotubes, soliton, supersonic wave.
  1. M. Toda. Theory of Nonlinear Lattices (Springer, Berlin, 1989)
  2. A.J. Sievers, S. Takeno. Phys. Rev. Lett., 61, 970 (1988). DOI: 10.1103/PhysRevLett.61.970
  3. P.G. Kevrekidis, B.A. Malomed, Yu.B. Gaididei. Phys. Rev. E, 66, 016609 (2002). DOI: 10.1103/PhysRevE.66.016609
  4. A.P.Chetverikov, W.Ebeling, M.G.Velarde. Phys. D, 240, 1954 (2011). DOI: 10.1016/j.physd.2011.09.005
  5. S.V. Dmitriev, E.A. Korznikova, A.P. Chetverikov. JETP, 126 (3), 347 (2018). DOI: 10.1134/S1063776118030019
  6. A.P. Chetverikov, S.V. Dmitriev, W. Ebeling, E.A. Korznikova, M.G. Velarde. Mater. Phys. Mech., 35, 16 (2018). DOI: 10.18720/MPM.3512018_3
  7. J.L. Marin, J.C. Eilbeck, F.M. Russell. Phys. Lett. A, 248, 225 (1998). DOI: 10.1016/S0375-9601(98)00577-5
  8. I.A. Shepelev, A.P. Chetverikov, S.V. Dmitriev, E.A. Korznikova. Comput. Mater. Sci., 177, 109549 (2020). DOI: 10.1016/j.commatsci.2020.109549
  9. I.A. Shepelev, I.D. Kolesnikov, E.A. Korznikova, S.V. Dmitriev. Phys. E, 146, 115519 (2023). DOI: 10.1016/j.physe.2022.115519
  10. O.E. Glukhova, A.P. Chetverikov, V.V. Shunaev. Tech. Phys. Lett., 48 (13), 37 (2021). DOI:10.21883/TPL.2022.13.53350.18895
  11. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert. Phys. Rev. B, 58, 7260 (1998). DOI: 10.1103/PhysRevB.58.7260
  12. M. Gaus, A. Goez, M. Elstner. Chem. Theory Comput., 9 (1), 338 (2012). DOI: 10.1021/ct300849w
  13. Z. Chen, Y. Liu, S. Liao, N. Yi, Q. Hu. J. Mol. Liq., 316, 113869 (2020). DOI: 10.1016/j.molliq.2020.113869
  14. N. Prasetyo, T.S. Hofer. Comput. Mater. Sci., 164 (15), 195-204 (2019). DOI: 10.1016/j.commatsci.2019.04.006

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru