Effect of the Dislocation Dipoles with Different Arms on the Graphene Deformation Behavior: molecular dynamics
Akhunova A.Kh.
1,2, Baimova J. A.
1,21Institute of Metal Superplasticity Problems, Russian Academy of Sciences, Ufa, Bashkortostan, Russia
2Ufa University of Science and Technology, Ufa, Russia
Email: akhunova.a.a@gmail.com, julia.a.baimova@gmail.com
The molecular dynamics simulation is used to analyze the features of the deformation behavior and the process of fracture of graphene with dislocation dipoles with different arm. Moreover, the wrinkling of graphene during deformation is taken into account, which greatly reduces the strength of graphene. It has been established that an increase in temperature slightly affects the mechanical properties of graphene with dislocation dipoles, in contrast to defect-free graphene and graphene with a Stone-Wales defect. It is shown that a change in the distance between dislocations in a dipole does not significantly affect the elastic modulus and graphene strength. However, the presence of dislocation dipoles can affect graphene wrinkling during stretching. Keywords: graphene, dislocation dipole, mechanical properties, molecular dynamics.
- J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, P.H. Tan. Chem. Society Rev., 47, 1822 (2018). DOI:10.1039/c6cs00915h
- P.M. Tailor, R.J. Wheatley, N.A. Besley. Carbon, 113, 299 (2017). DOI:10.1016/j.carbon.2016.11.059
- M. Braun, F. Arca, M. Ariza. Intern. J. Mechan. Sci., 209, 106702 (2021). DOI:10.1016/j.ijmecsci.2021.106702
- A. Cao, B. Shen, Q. Lin, S. Chen, Z. Huang, Z. Ji, Z. Zhang. Computational Mater. Sci., 173, 109423 (2020). DOI:10.1016/j.commatsci.2019.109423
- S. Ajori, A. Ameri, R. Ansari. Superlattices and Microstructures, 142, 106526 (2020). DOI:10.1016/j.spmi.2020.106526
- Y. Fu, T. Ragab, C. Basaran. Mater. Sci., 124, 142 (2016). DOI:10.1016/j.commatsci.2016.07.022
- T.H. Liu, C.W. Pao, C.C. Chang. Carbon, 50, 3465 (2012). DOI:10.1016/j.carbon.2012.03.012
- T.A. Oliveira, P.V. Silva, V. Meunier, E.C. Girao. Carbon, 201, 222 (2023). DOI:10.1016/j.carbon.2022.08.079
- H. Wang, Y. Wang, B. Bai, X. Guo, J. Xue. Appl. Surf. Sci., 531, 147347 (2020). DOI:10.1016/j.apsusc.2020.147347
- M. Shakeri. Superlattices and Microstructures, 128, 116 (2019). DOI:10.1016/j.spmi.2019.01.019
- F. Wang, X. Xu, J. Mao. Diamond Related Mater., 109, 108037 (2020). DOI:10.1016/j.diamond.2020.108037
- A.K. Manna, S.J. Gilbert, S.R. Joshi, T. Komesu, S. Varma. Physica E, 143, 115329 (2022). DOI:10.1016/j.physe.2022.115329
- A.I. Podlivaev, L.A. Openov. FTT, 57 (4), 802 (2015). (in Russian)
- S.T. Skowron, I.V. Lebedeva, A.M. Popov, E. Bichoutskaia. Chem. Society Rev., 44, 3143 (2015). DOI: 10.1039/c4cs00499j
- M. Ariza, M. Ortiz. J. Mechan. Phys. Solids, 58, 710 (2010). DOI:10.1016/j.jmps.2010.02.008
- Y. Yao, S. Wang, J. Bai, R. Wang. Physica E, 84, 340 (2016). DOI:10.1016/j.physe.2016.08.004
- M. Lazar. Phys. Lett. A, 377, 423 (2013). DOI:10.1016/j.physleta.2012.12.005
- L. Xu, N. Wei, Y. Zheng. Nanotechnology, 24, 505703 (2013). DOI:10.1088/0957-4484/24/50/505703
- Y.X. Du, L.J. Zhou, J.G. Guo. Mater. Chem. Phys., 288, 126412 (2022). DOI:10.1016/j.matchemphys.2022.126412
- M. Torkaman-Asadi, M. Kouchakzadeh. Comput. Mater. Sci., 210, 111457 (2022). DOI:10.1016/j.commatsci.2022.111457
- M.A.N. Dewapriya, R.K.N.D. Rajapakse. J. Appl. Mechan., 81, 081010 (2014). DOI:10.1115/1.4027681
- K.K. Gupta, S. Dey. In: Lecture Notes on Multidisciplinary Industrial Engineering, ed. by R.G. Narayanan, S.N. Joshi, U.S. Dixit. (Springer, Singapore, 2019), p. 793. DOI:10.1007/978-981-32-9072-3_66
- K.K. Gupta, T. Mukhopadhyay, A. Roy, S. Dey. J. Mater. Sci. Technol., 50, 44 (2020). DOI:10.1016/j.jmst.2020.03.004
- L.D. Landau. Phys. Z. Sowjet Union, 11, 56 (1937)
- R. Peierls. Helv. Phys. Acta, 7, 81 (1934)
- N.D. Mermin. Phys. Rev., 176, 250 (1968)
- D. Nelson, L. Peliti. J. Physique, 48, 1085 (1987). DOI:10.1051/jphys:019870048070108500
- A. Fasolino, J.H. Los, M.I. Katsnelson. Nature Mater., 6, 858 (2007). DOI:10.1038/370nmat2011
- V.B. Shenoy, C.D. Reddy, A. Ramasubramaniam, Y.W. Zhang. Phys. Rev. Lett., 101, 245501 (2008). DOI:10.1103/physrevlett.101.245501
- S. Deng, V. Berry. Mater. Today, 19, 197 (2016). DOI:10.1016/j.mattod.2015.10.002
- C. Wang, L. Lan, Y. Liu, H. Tan. Comput. Mater. Sci., 77, 250 (2013). DOI:10.1016/j.commatsci.2013.04.051
- T. Zhang, X. Li, H. Gao. J. Mechan. Phys. Solids, 67, 2 (2014). DOI:10.1016/j.jmps.2014.02.005
- J.A. Baimova, S.V. Dmitriev, K. Zhou. Physica Status Solidi (b), 249, 1393 (2012). DOI:10.1002/pssb.201084224
- J.A. Baimova, S.V. Dmitriev, K. Zhou, A.V. Savin. Phys. Rev. B, 86, 035427 (2012). DOI:10.1103/physrevb.86.035427
- H. Qin, Y. Sun, J.Z. Liu, M. Li, Y. Liu. Nanoscale, 9, 4135 (2017). DOI:10.1039/c6nr07911c
- J.N. Grima, S. Winczewski, L. Mizzi, M.C. Grech, R. Cauchi, R. Gatt, D. Attard, K.W. Wojciechowski, J. Rybicki. Tailoring Adv. Mater., 27, 1455 (2014). DOI:10.1002/ 387adma.201404106
- S. Zhao, Y. Zhang, J. Yang, S. Kitipornchai. Carbon, 168, 135 (2020). DOI:10.1016/j.carbon.2020.06.054
- S. Zhao, Y. Zhang, J. Yang, S. Kitipornchai. J. Mater. Sci. Technol., 120, 196 (2022). DOI:10.1016/j.jmst.2021 392.12.042
- H.S. Seung, D.R. Nelson. Phys. Rev. A, 38, 1005 (1988). DOI:10.1103/physreva.38.1005
- G.-D. Lee, E. Yoon, K. He, A.W. Robertson, J.H. Warner. Nanoscale, 6, 14836 (2014). DOI:10.1039/c4nr04718d
- Y. Kawamura, Y. Ohta. Comp. Mater. Sci., 205, 111224 (2022). DOI:10.1016/j.commatsci.2022.111224
- E. Ertekin, D.C. Chrzan, M.S. Daw. Phys. Rev. B, 79, 155421 (2009). DOI:10.1103/physrevb.79.155421
- Y. Liu, B. I. Yakobson. Nano Lett., 10, 2178 (2010)
- S. Chen. Buckling and Topological Defects in Graphene and Carbon Nanotubes (UC Berkeley Electronic Theses and Dissertations, University of California, Berkeley, 2012), https://escholarship.org/uc/item/59v245r8
- S.J. Stuart, A.B. Tutein, J.A. Harrison. Chem. Phys., 112, 6472 (2000). DOI:10.1063/1.481208
- C. Lee, X. Wei, J.W. Kysar, J. Hone. Science, 321, 385 (2008). DOI:10.1126/science.1157996
- G. Zhang, H. Liu, Y. Chen, H. Qin, Y. Liu. J. Mechan. Phys. Solids, 169, 105080 (2022). DOI:10.1016/j.jmps.2022.105080
- M. Chen, S. Quek, Z. Sha, C. Chiu, Q. Pei, Y. Zhang. Carbon, 85, 135 (2015). DOI:10.1016/j.carbon.2014.12.092
- K. Zhou, B. Liu. In book: Molecular Dynamics Simulation, ed. by E. Thompson. (Elsevier Inc., U.S., 2022), p. 129. DOI:10.1016/b978-0-12-816419-8.00010-6
- K.A. Krylova, L.R. Safina, S.A. Shcherbinin, J.A. Baimova. Methodology for Materials, 15, 4038 (2022). DOI:10.3390/ma15114038
- B. Mortazavi, S. Ahzi. Carbon, 63, 460 (2013). DOI:10.1016/j.carbon.2013.07.017
- N. Jing, Q. Xue, C. Ling, M. Shan, T. Zhang, X. Zhou, Z. Jiao. RSC Advances, 2, 9124 (2012). DOI:10.1039/c2ra21228e
- A.I.C. Mihaila, T. Susi, J. Kotakoski. Scientific Reports, 2 9124, (2019). DOI:10.1038/s41598-019-49565-4
- T. Susi, J.C. Meyer, J. Kotakoski. Nature Rev. Phys., 1, 397 (2019). DOI:10.1038/s42254-019-0058-y
- O. Dyck, S. Yeom, S. Dillender, A.R. Lupini, M. Yoon, S. Jesse. Carbon, 201, 212 (2023). DOI:10.1016/j.carbon.2022.09.006
- H. Zhao, N.R. Aluru. J. Appl. Phys., 108, 064321 (2010). DOI:10.1063/1.3488620
- C.S. Ruiz-Vargas, H.L. Zhuang, P.Y. Huang, A.M. van der Zande, S. Garg, P.L. McEuen, D.A. Muller, R.G. Hennig, J. Park. Nano Lett., 11, 2259 (2011). DOI:10.1021/nl200429f
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.