Analytical capabilities of a thermodesorption spectrometer with a surface-ionization detection of organic molecules in air
Radjabov A. Sh. 1, Khasanov U.1, Iskhakova S. S. 1, Akhmedov Sh. M.1, Kakhramonova G. P.1, Akhunov Sh. Dj.1, Usmanov D. T. 1
1Institute of Ion-Plasma and Laser Technologies, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
Email: a.radjabov0217@gmail.com, saidais@mail.ru, usmanov@iplt.uz

PDF
This paper presents the results of research on the development of a mathematical model of thermal desorption spectrometry with a surface ionization method for detecting molecules of organic substances, as well as an analysis of the capabilities of a thermal desorption spectrometer operating on the basis of this method. The mathematical model of the method was developed on the basis of the regularities of thermal desorption spectrometry, as well as the regularities of surface ionization of molecules of organic substances under non-stationary conditions. The spectrometer consists of a surface ionization detector and an evaporator of substances heated in a thermally programmed mode. The adjustment and selection of the operating mode of the spectrometer were carried out on the basis of the mathematical model of the method. The analytical capabilities of the spectrometer were studied by comparing the thermodesorption spectra of a mixture of chromatographically pure cannabinoids and an extract of the biological fluids of a marijuana user (blood, urine), as well as the spectra of chromatographically pure morphine and urine extracts of a heroin user. The results of the analysis showed the perspectives of the proposed method and instrument for the detection and analysis of drugs and psychotropic drugs in extracts of biomaterials of consumers of these substances without chromatographic separation. Keywords: biosamples of drug users, mathematical model of the method, thermal desorption spectrum, identification and quantitative analysis.
  1. A.G. Harrison. Chemical Ionization Mass Spectrometry, 2nd ed. (CRC Press, Boca Raton, Florida, 1992)
  2. G.W. Wood. Mass Spectrom. Rev., 1, 63 (1982). DOI: 10.1002/mas.1280010106
  3. M. Barber, R.S. Bordoli, R.D. Sedgwick, A.N. Tyler. Nature, 293, 270 (1981). DOI: 10.1038/293270a0
  4. D.J. Surman, J.C. Vickerman. J. Chem. Soc. Chem. Commun., 398, 324 (1981). DOI: 10.1039/C39810000324
  5. M.L. Vestal. Mass Spectrom. Rev., 3, 447 (1983). DOI: 10.1002/mas.1280020403
  6. D.I. Carroll, I. Dzidic, R.N. Stillwell, K.D. Haegele, E.C. Horning. Anal. Chem., 47 (14), 2369 (1975). DOI: 10.1021/ac60364a031
  7. M. Yamashita, J.B. Fenn. J. Phys. Chem., 88 (20), 4451 (1984). DOI: 10.1021/j150664a002
  8. L. Bi, A. Habib, L. Chen, T. Xu, L. Wen. Talanta, 222, 121673 (2021). DOI: 10.1016/j.talanta.2020.121673
  9. D.T. Usmanov, K.M. Mandal, K. Hiraoka, S. Ninomiya, H. Wada, M. Matsumura, S. Sanada-Morimura, H. Nonami, Sh. Yamabe. Food Chem., 260, 53 (2018). DOI: 10.1016/j.foodchem.2018.04.003
  10. D.S. Lho, H.S. Shin, B.K. Kang, J. Park. J. Anal. Toxicol., 14 (2), 73 (1990). DOI: 10.1093/jat/14.2.73
  11. E. Lendoiro, C. Jimenez-Morigosa, A. Cruz, M. Paramo, M. Lopez-Rivadulla, A. de Castro. Drug Test Anal., 9 (1), 96 (2016). DOI: 10.1002/dta.1948
  12. Sy-Ch. Cheng, Y-D. Tsai, C.-W. Lee, B.-H. Chen, J. Shiea. J. Food Drug Anal., 27 (2), 451 (2019). DOI: 10.1016/j.jfda.2018.12.005
  13. M. Concheiro, M. Castaneto, R. Kronstrand, M.A. Huestis. J. Chromatogr. A, 1397, 32 (2015). DOI: 10.1016/j.chroma.2015.04.002
  14. H. Nie, X. Li, Z. Hua, W. Pan, Y. Bai, X. Fu. Rapid Commun. Mass Spectrom., 30 (S1), 141 (2016). DOI: 10.1002/rcm.7629
  15. A. Stachniuk, E. Fornal. Food Anal. Method, 9 (6), 1654 (2016). DOI: 10.1007/s12161-015-0342-0
  16. Electronic source. Available at: http//webbook.nist.gov
  17. H.H. Maurer, K. Pfleger, A.A. Weber. Mass Spectral and GC Data of Drugs, Poisons, Pesticides, Pollutants, and Their Metabolites, 5th ed. (John Wiley \& Sons, USA, 2016)
  18. Yu.A. Zolotov. Problemy analiticheskoj khimii. Vnelaboratorny khimicheskij analiz (Nauka, M., 2010), t. 13. (in Russian)
  19. L.M. Fytche, M. Hupe, J.B. Kovar, P. Pilon. J. Forensic Sci., 37 (6), 1550 (1992). DOI: 10.1520/JFS13346J
  20. L. Li, T-Ch. Chen, Y. Ren, P.I. Hendricks, R.G. Cooks, Z. Ouyang. Anal. Chem., 86 (6), 2909 (2014). DOI: 10.1021/ac403766c
  21. L. Gao, Q. Song, G.E. Patterson, R.G. Cooks. Anal. Chem., 78 (17), 5994 (2006). DOI: 10.1021/ac061144k
  22. G. Patterson, J. Grossenbacher, M. Wells, A. Keil, M. Gregory. Proceedings of the 55th ASMS Conference on Mass Spectrometry and Allied Topics (Indianapolis, IN, 2007)
  23. J.A. Contreras, J.A. Murray, S.E. Tolley, J.L. Oliphant, H.D. Tolley, S.A. Lammert, E.D. Lee, D.W. Later, M.L. Lee. J. Am. Soc. Mass Spectr., 19 (10), 1425 (2008). DOI: 10.1021/jasms.8b03064
  24. L. Gao, A. Sugiarto, J.D. Harper, R.G. Cooks, Z. Ouyang. Anal. Chem., 80 (19), 7198 (2008). DOI: 10.1021/ac801275x
  25. V.I. Kapustin, A.P. Korzhavy. RTZh, 4 (2), 3 (2016). (in Russian)
  26. U.Kh. Rasulev, E.Ya. Zandberg. Prog. Surf. Scien., 28 (3-4), 181 (1988). DOI: 10.1016/0079-6816(88)90003-2
  27. T. Fujii. Eur. Mass Spectr., 2 (5), 263 (1996). DOI: 10.1255/ejms.73
  28. U.Kh. Rasulev, U. Khasanov, V.V. Palitsin. J. Chromatogr. A, 896 (1-2), 3 (2000). DOI: 10.1016/S0021-9673(00)00458-1
  29. A. Ishii, K. Watanabe-Suzuki, H. Seno, O. Suzuki, Y. Katsumata. J. Chromatogr. B, 776 (1), 3 (2002). DOI: 10.1016/s1570-0232(02)00183-6
  30. D.T. Usmanov, Sh.Dj. Akhunov, U. Khasanov, V.M. Rotshteyn, B.Sh. Kasimov. Eur. Mass Spectr., 26 (2), 153 (2020). DOI: 10.1177/1469066719875655
  31. I.A. Buryakov, E.V. Krylov, A.L. Makasem, E.G. Nazarov, V.V. Pervukhin, U.Kh. Rasulev. ZhAKh, 48 (1), 156 (1993). (in Russian)
  32. U.Kh. Rasulev, S.S. Iskhakova, U. Khasanov, A.V. Mikhalin. Int. J. Ion Mob. Spectr., 4, 212 (2001)
  33. S.S. Iskhakova, A.V. Mikhailin, U.Kh. Rasulev, Ya.R. Sagatov, U. Khasanov. AnChem, 59, 58 (2004). DOI: 10.1023/B:JANC.0000011668.20677.d1
  34. N.M. Popova, L.V. Babenkova, G.A. Savel'eva, Yu.G. Kul'evskaya, N.G. Smirnova, V.K. Solnyshkova. O sovremennom metode termodesorbtsii i ego ispol'zovanii v adsorbtsii i katalize (Nauka, Alma-Ata, 1985) (in Russian)
  35. S.S. Iskhakova, U. Khasanov, U.Kh. Rasulev, D.T. Usmanov. Tech. Phys Lett., 46 (12), 1231 (2020). DOI: 10.1134/S1063785020120196
  36. A.Sh. Radzhabov, S.S. Iskhakova, D.T. Usmanov. ZhTF, 91 (12), 1893 (2021) (in Russian). DOI: 10.21883/JTF.2021.12.51753.164-21
  37. N.V. Veselovskaya, A.E. Kovalenko, I.P. Papazov, K.A. Galuzin, I.V. Moskal, N.I. Shibanova. Narkotiki. Svojstva, dejstvie, farmakokinetika, metabolism (Narkonet, M., 2008) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru