Structure studies of graded amorphous carbon obtained by liquid carbon quenching
Dozhdikov V. S.
1, Basharin A. Y.
1, Levashov P. R.
11Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: vdozh@mail.ru, ayb@iht.mpei.ac.ru, pasha@jiht.ru
A new method for obtaining graded amorphous carbon using quenching of a graphite melt on a diamond substrate is proposed. Using molecular dynamics modeling of liquid carbon quenching on a cold diamond substrate, it is shown that the amorphous carbon obtained in the experiment is a material with a strongly gradient structure and properties along the depth of the sample. This is due to the quenching rate decrease with the distance from the substrate in the range of 1014-1012 K/s. In this case, the density of amorphous carbon varies from 1.50 g/cm3 to 1.93 g/cm3. The spatial change in the structural characteristics of the obtained amorphous carbon was studied: the distribution of carbon atoms according to the degree of chemical bond hybridization (sp1-, sp2-, sp3-), the radial distribution function, the angular distribution function, and a statistical analysis of carbon rings were carried out. It is shown that at a pressure in liquid of 1 GPa, the carbon structure within the quenched zone changes from a highly porous structure with a large number of sp1 chains of carbon atoms near the substrate to an amorphous graphene structure at the periphery. Keywords: amorphous carbon, liquid carbon, quenching, molecular dynamics, radial distribution function.
- N.F. Marks. Amorphous Carbon and Related Materials. In: Computer-Based Modeling of Novel Carbon Systems and Their Properties: Beyond Nanotubes (Springer, Dordrecht, 2010), DOI: 10.1007/978-1-4020-9718-8_5
- H.K. Tran, C.E. Johnson, D.J. Rasky, F.C.L. Hui, M.-T. Hsu, Y.K. Chen. Phenolic Impregnated Carbon Ablators (PICA) for Discovery Class Missions. In: 31st AIAA Thermophys. Conf. (New Orleans, 1996), p. 1911. DOI: 10.2514/6.1996-1911
- A.S.V. Pulickel, M.B. Chaudhari. Int. J. Appl. Res. Mech. Eng., 1 (3), 1 (2012). DOI: 10.47893/IJARME.2012.1039
- Y. Liu, A. Erdemir, E.I. Meletis. Surf. Coatings Technol., 82, 48 (1996). DOI: 10.1016/0257-8972(95)02623-1
- J. Robertson. Mater. Sci. Eng. Reports, 37 (4-6), 129 (2002). DOI: 10.1016/S0927-796X(02)00005-0
- H. Tsai, D.B. Bogy. J. Vac. Sci. Technol. A: Vacuum, Surfaces and Films, 5 (6), 3287 (1987). DOI: 10.1116/1.574188
- L. Colombo, A. Fasolino. Computer-Based Modeling of Novel Carbon Systems and Their Properties: Beyond Nanotubes (Springer, Berlin, 2010), DOI: 10.1007/978-1-4020-9718-8
- M. Niino, T. Hirai, R. Watanabe. J. Jpn. Soc. Compos. Mater., 13, 257 (1987)
- P.M. Pandey, S. Rathee, M. Srivastava, P.K. Jain. Functionally Graded Materials (FGMs). Fabrication, Properties, Applications, and Advancements (Taylor \& Francis Group, LLC, CRC Press, 2022), DOI: 10.1201/9781003097976
- J.C. Sung, J. Lin. Diamond Nanotechnology: Synthesis and Applications (Jenny Stanford Publishing, NY., 2010), DOI: 10.1201/9780429066498
- A.Y. Basharin, V.S. Dozhdikov, V.T. Dubinchuk, A.V. Kirilin, I.Y. Lysenko, M.A. Turchaninov. Tech. Phys. Lett., 35, 428 (2009). DOI: 10.1134/S1063785009050137
- V.S. Dozhdikov, A.Yu. Basharin, P.R. Levashov. High Temperature, 60 (2), S248 (2022). DOI: 10.31857/S0040364421050045
- V.S. Dozhdikov, A.Yu. Basharin, P.R. Levashov. J. Physics: Conf. Series, 653 (1), 012091 (2015). DOI: 10.1088/1742-6596/653/1/012091
- V.S. Dozhdikov, A.Yu. Basharin, P.R. Levashov. J. Physics: Conf. Series, 1147 (1), 012008 (2019). DOI: 10.1088/1742-6596/1147/1/012008
- G. Galli, R.M. Martin, R. Car, M. Farrinello. Phys. Rev. Lett., 62 (5), 555 (1989). DOI: 10.1103/PhysRevLett.62.555
- C.Z. Wang, K.M. Ho. Phys. Rev. Lett., 71 (8), 1184 (1993). DOI: 10.1103/PhysRevLett.71.1184
- N.A. Marks, D.R. McKenzie, B.A. Pailthorpe, M. Bernasconi, M. Parrinello. Phys. Rev. Lett., 76 (5), 768 (1996). DOI: 10.1103/PhysRevLett.76.768
- D.G. McCulloch, D.R. McKenzie, C.M. Goringe. Phys. Rev. B, 61 (3), 2349 (2000). DOI: 10.1103/PhysRevB.61.2349
- N.A. Marks, N.C. Cooper, D.R. McKenzie, D.G. McCulloch, P. Bath, S.P. Russo. Phys. Rev. B, 65 (7), 075411 (2002). DOI: 10.1103/PhysRevB.65.075411
- C. Mathioudakis, G. Kopidakis, P.C. Kelires, C.Z. Wang, K.M. Ho. Phys. Rev. B, 70 (12), 125202 (2004). DOI: 10.1103/PhysRevB.70.125202
- T. Kumagai, S. Hara, J. Choi, S. Izumi, T. Kato. J. App. Phys., 105 (6), 064310 (2009). DOI: 10.1063/1.3086631
- Z.D. Sha, P.S. Branicio, Q.X. Pei, V. Sorkin, Y.W. Zhang. Comput. Mater. Sci., 67, 146 (2013). DOI: 10.1016/j.commatsci.2012.08.042
- L. Li, M. Xu, W. Song, A. Ovcharenko, G. Zhang, D. Jia. Appl. Surf. Sci., 286, 287 (2013). DOI: 10.1016/j.apsusc.2013.09.073
- L.J. Peng, J.R. Morris. Carbon, 50 (3), 1394 (2012). DOI: 10.1016/j.carbon.2011.11.012
- C. de Tomas, I. Suarez-Martinez, N.A. Marks. Carbon, 109, 681 (2016). DOI: 10.1016/j.carbon.2016.08.024
- R. Ranganathan, S. Rokkam, T. Desai, P. Keblinski. Carbon, 113, 87 (2017). DOI: 10.1016/j.carbon.2016.11.024
- V.L. Deringer, G. Csanyi1. Phys. Rev. B, 95 (9), 094203 (2017). DOI: 10.1103/PhysRevB.95.094203
- P. Rowe, V.L. Deringer, P. Gasparotto, G. Csanyi, A. Michaelides. J. Chem. Phys., 153 (3), 034702 (2020). DOI: 10.1063/5.0005084
- M.W. Thompson, B. Dyatkin, H.W. Wang, C.H. Turner, X. Sang, R.R. Unocic, C.R. Iacovella, Y. Gogotsi, A.C.T. van Duin, P.T. Cummings. J. Carbon Research, 3 (4), 32 (2017). DOI: 10.3390/c3040032
- X. Li, A. Wang, K.-R. Lee. Comput. Mater. Sci., 151, 246 (2018). DOI: 10.1016/j.commatsci.2018.04.062
- K. Li, H. Zhang, G. Li, J. Zhang, M. Bouhadja, Z. Liu, A.A. Skelton, M. Barati. J. Chem. Theory Comput., 14 (5), 2322 (2018). DOI: 10.1021/acs.jctc.7b01296
- C. de Tomas, A. Aghajamali, J.L. Jones, D.J. Lim, M.J. Lopez, I. Suarez-Martinez, N.A. Marks. Carbon, 155, 624 (2019). DOI: 10.1016/j.carbon.2019.07.074
- R. Jana, D. Savio, V.L. Deringer, L. Pastewka. Modelling Simul. Mater. Sci. Eng., 27 (8), 085009 (2019). DOI: 10.1088/1361-651X/ab45da
- Q. Liu, L. Li, Y.R. Jeng, G. Zhang, C. Shuai, X. Zhu. Comput. Mater. Sci., 184, 109939 (2020). DOI: 10.1016/j.commatsci.2020.109939
- B. Bhattarai, D.A. Drabold. Carbon, 115, 532 (2017). DOI: 10.1016/j.carbon.2017.01.031
- N. Orekhov, G. Ostroumova, V. Stegailov. Carbon, 170, 606 (2020). DOI: 10.1016/j.carbon.2020.08.009
- N.A. Marks. Phys. Rev. B., 56 (5), 2441 (1997). DOI: 10.1103/PhysRevB.56.2441
- L.M. Meji a-Mendoza, M. Valdez-Gonzalez, Jesus Muniz, U. Santiago, A.K. Cuentas-Gallegos, M. Robles. Carbon, 120, 233 (2017). DOI: 10.1016/j.carbon.2017.05.043
- L. Alonso, J.A. Alonso, M.J. Lopez. Computer Simulations of the Structure of Nanoporous Carbons and Higher Density Phases of Carbon. In: Many-body Approaches at Different Scales (Springer, Cham., Catania, 2018), DOI: 10.1007/978-3-319-72374-7_3
- J.C. Palmer, K.E. Gubbins. Microporous and Mesoporous Mater., 154, 24 (2012). DOI: 10.1016/j.micromeso.2011.08.017
- V.S. Dozhdikov, A.Yu. Basharin, P.R. Levashov, D.V. Minakov. J. Chem. Phys., 147 (21), 214302 (2017). DOI: 10.1063/1.4999070
- L. Liu, Yi. Liu, S.V. Zybin, H. Sun, W.A. Goddard III. J. Phys. Chem. A, 115 (40), 11016 (2011). DOI: 10.1021/jp201599t
- A.C. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard III. J. Phys. Chem. A, 105 (41), 9396 (2001). DOI: 10.1021/jp004368u
- S.B. Kylasa, H.M. Aktulga, A.Y. Grama. J. Comput. Phys., 272, 343 (2014). DOI: 10.1016/j.jcp.2014.04.035
- S. Plimpton. J. Comp. Phys., 117 (1), 1 (1995). DOI: 10.1006/jcph.1995.1039 (https://lammps.sandia.gov/index.html)
- N.A. Marks, D.R. McKenzie, B.A. Pailthorpe, M. Bernasconi, M. Parrinello. Phys. Rev. B, 54 (14), 9703 (1996). DOI: 10.1103/PhysRevB.54.9703
- S. Best, J.B. Wasley, C. de Tomas, A. Aghajamali, I. Suarez-Martinez, N.A. Marks. C.-J. Carbon Research, 6 (3), 50 (2020). DOI: 10.3390/c6030050
- D.R. McKenzie, A.R. Merchant, D.G. McCulloch, H. Malloch, N.A. Marks, M.M.M. Bilek. Surf. Coat. Technol., 198 (1-3), 212 (2005). DOI: 10.1016/j.surfcoat.2004.10.043
- B. Bhattarai, P. Biswas, R. Atta-Fynn, D.A. Drabold. Phys. Chem. Chem. Phys., 20 (29), 19546 (2018). DOI: 10.1039/C8CP02545B
- R.C. Powles, N.A. Marks, D.W.M. Lau. Phys. Rev. B, 79 (7), 075430 (2009). DOI: 10.1103/PhysRevB.79.075430
- N. Orekhov, M. Logunov. Carbon, 192, 179 (2022). DOI: 10.1016/j.carbon.2022.02.058
- Y. Hiraokaa, T. Nakamuraa, A. Hirataa, E.G. Escolara, K. Matsueb, Y. Nishiuraa. Proc. Natl. Acad. Sci. U.S.A., 113 (26), 7035 (2016). DOI: 10.1073/pnas.152087711
- Y. Shi, J. Neuefeind, D. Ma, K. Page, L.A. Lamberson, N.J. Smith, A. Tandia, A.P. Song. J. Non-Cryst. Solids, 516, 71 (2019). DOI: 10.1016/j.jnoncrysol.2019.03.037
- V.L. Deringer, N. Bernstein, A.P. Bartok, M.J. Cliffe, R.N. Kerber, L.E. Marbella, C.P. Grey, S.R. Elliott, G. Csanyi. J. Phys. Chem. Lett., 9 (11), 2879 (2018). DOI: 10.1021/acs.jpclett.8b00902
- S.V. King. Nature, 213 (5081), 1112 (1967). DOI: 10.1038/2131112a0
- S. Le Roux, V. Petkov. J. Appl. Cryst. 43 (1), 181 (2010). DOI: 10.1107/S0021889809051929
- S. Le Roux, P. Jund. Comput. Mater. Sci., 49 (1), 70 (2010). DOI: 10.1016/j.commatsci.2010.04.023
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.