Photocatalytic methyl orange degradation on the surface of nanoporous layers of copper, silver and their iodides
Bezrukov P. A.1, Nashchekin A. V.2, Sidorov A. I.1,3, Nikonorov N. V.
1ITMO University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: pawqa1@yandex.ru, nashchekin@mail.ioffe.ru, sidorov@oi.ifmo.ru, nikonorov@oi.ifmo.ru
The efficiency of photocatalytic decomposition of methyl orange solutions on the surface of nanoporous layers of copper, silver and their iodides has been studied. It is shows that nanoporous layers on metal substrates have two absorption bands: they absorb radiation in the UV and Vis spectral range. The process of decomposition of methyl orange molecules on the surface of metal-semiconductor nanostructures Ag-AgI and Cu-CuI occurs under the action of UV and Vis irradiation. While transparency of the methyl orange solution increases. Keywords: nanoporous layer, nanostructures metal-semiconductor, methyl orange, decomposition, photocatalysis. DOI: 10.61011/EOS.2023.02.55789.16-23
- S. Markgraf, M. Horenz, T. Schmiel, W. Jehle, J. Lucas, N. Henn. J. Power Sources, 201, 236(2012). DOI:10.1016/j.jpowsour.2011.10.118
- K. Maeda. J. Photochem. Photobiol. C., 12, 237 (2011). DOI:10.1016/j.jphotochemrev.2011.07.001
- Y. Wang, D. He, D. Wang. J. Photochem. Photobiol. C., 40, 117 (2019). DOI:10.1016/j.jphotochemrev.2011.07.001
- M. Mitra. Electr. Eng. Op. Acs. Open J., 1(1), 1(2019). DOI:10.5281/zenodo.2616442
- P.P.Kundu, K.Dutta. Compendium of Hydrogen Energy (Woodhead Publishing, Oxford, 2016), 4. DOI:10.1016/B978-1-78242-364-5.00006-3
- Z. Zhang, F. Li, H. Feng, C. Ma, X. Hou. In: E3S Web Conf. (ICAEER 2019), v. 118, p. 01058. DOI:10.1051/e3sconf/201911801058
- M.Kh Sosna, M.V. Kryuchkov, M.V. Maslennikova, M.V. Pustovalov. NefteGasoKhimiya, 3(4), 21(2020) (in Russian). DOI:10.24412/2310-8266-2020-3-4-21-23
- Y. Ahmed, Z. Yaakob, P. Akhtar. Catal. Sci. Technol., 6 (4), 1222(2016). DOI:10.1039/c5cy01494h
- X. Fu, H. Chang, Z. Shang, P. Liu, J. Liu, H. Luo. Chem. Eng. J., 381, 122001(2020). DOI:10.1016/j.cej.2019.122001
- L. Wang, W. Si, X. Hou,M. Wang, X. Liu, Y. Ye, F. Hou, J. Liang. Sust. Mater. Technol., 25, e00209(2020). DOI:10.1016/j.susmat.2020.e00209
- Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin. Nano. Lett., 11(3), 1111(2011). DOI:10.1021/nl104005n
- Q. Hu, L. Baoshun, Z. Zhang, M. Song, X. Zhao. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 25(2), 210(2010). DOI:10.1007/s11595-010-2210-5
- M. Graf, D. Jalas, J. Weissmuller, A.Y. Petrov, M. Eich. ACS Catal., 9(4), 3366(2019). DOI:10.1021/acscatal.9b00384
- P.A. Bezrukov, A.V. Nashchekin, N.V. Nikonorov, A.I. Sidorov. Nauch.-Tekhn. Vestnik Inform. Tekhn., Mekh. i Opt., 21(4), 457(2021) (in Russian). DOI:10.17586/2226-1494-2021-21-4-457-462
- N. Youssef, S. Shaban, F. Ibrahim, A. Mahmoud. Egypt. J. Petroleum, 25(3), 317 (2016). DOI: 10.1016/j.ejpe.2015.07.017
- J. Xiong, Z. Li, S. Zhang, L. Wang, S. Dou. ACS Appl. Mater Interfaces, 6 (18), 15716 (2014). DOI:10.1021/am502516s
- P. Wang, B. Huang, Q. Zhang, X. Zhang, X. Qin, Y. Dai, J. Zhan, J. Yu, H. Liu, Z. Lou. Chem. Eur. J., 16, 10042 (2010). DOI: 10.1002/chem.200903361
- J. Jiang, L. Zhang. Chem. Eur. J., 17, 3710 (2011). DOI: 10.1002/chem.201002951
- Y-S. Ho, J. Hazard. Mat., 136 (3), 681 (2006). DOI: 10.1016/j.jhazmat.2005.12.043
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.