Photocatalytic methyl orange degradation on the surface of nanoporous layers of copper, silver and their iodides
Bezrukov P. A.1, Nashchekin A. V.2, Sidorov A. I.1,3, Nikonorov N. V.
1 ITMO University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: pawqa1@yandex.ru, nashchekin@mail.ioffe.ru, sidorov@oi.ifmo.ru, nikonorov@oi.ifmo.ru

PDF
The efficiency of photocatalytic decomposition of methyl orange solutions on the surface of nanoporous layers of copper, silver and their iodides has been studied. It is shows that nanoporous layers on metal substrates have two absorption bands: they absorb radiation in the UV and Vis spectral range. The process of decomposition of methyl orange molecules on the surface of metal-semiconductor nanostructures Ag-AgI and Cu-CuI occurs under the action of UV and Vis irradiation. While transparency of the methyl orange solution increases. Keywords: nanoporous layer, nanostructures metal-semiconductor, methyl orange, decomposition, photocatalysis. DOI: 10.61011/EOS.2023.02.55789.16-23
  1. S. Markgraf, M. Horenz, T. Schmiel, W. Jehle, J. Lucas, N. Henn. J. Power Sources, 201, 236(2012). DOI:10.1016/j.jpowsour.2011.10.118
  2. K. Maeda. J. Photochem. Photobiol. C., 12, 237 (2011). DOI:10.1016/j.jphotochemrev.2011.07.001
  3. Y. Wang, D. He, D. Wang. J. Photochem. Photobiol. C., 40, 117 (2019). DOI:10.1016/j.jphotochemrev.2011.07.001
  4. M. Mitra. Electr. Eng. Op. Acs. Open J., 1(1), 1(2019). DOI:10.5281/zenodo.2616442
  5. P.P.Kundu, K.Dutta. Compendium of Hydrogen Energy (Woodhead Publishing, Oxford, 2016), 4. DOI:10.1016/B978-1-78242-364-5.00006-3
  6. Z. Zhang, F. Li, H. Feng, C. Ma, X. Hou. In: E3S Web Conf. (ICAEER 2019), v. 118, p. 01058. DOI:10.1051/e3sconf/201911801058
  7. M.Kh Sosna, M.V. Kryuchkov, M.V. Maslennikova, M.V. Pustovalov. NefteGasoKhimiya, 3(4), 21(2020) (in Russian). DOI:10.24412/2310-8266-2020-3-4-21-23
  8. Y. Ahmed, Z. Yaakob, P. Akhtar. Catal. Sci. Technol., 6 (4), 1222(2016). DOI:10.1039/c5cy01494h
  9. X. Fu, H. Chang, Z. Shang, P. Liu, J. Liu, H. Luo. Chem. Eng. J., 381, 122001(2020). DOI:10.1016/j.cej.2019.122001
  10. L. Wang, W. Si, X. Hou,M. Wang, X. Liu, Y. Ye, F. Hou, J. Liang. Sust. Mater. Technol., 25, e00209(2020). DOI:10.1016/j.susmat.2020.e00209
  11. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin. Nano. Lett., 11(3), 1111(2011). DOI:10.1021/nl104005n
  12. Q. Hu, L. Baoshun, Z. Zhang, M. Song, X. Zhao. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 25(2), 210(2010). DOI:10.1007/s11595-010-2210-5
  13. M. Graf, D. Jalas, J. Weissmuller, A.Y. Petrov, M. Eich. ACS Catal., 9(4), 3366(2019). DOI:10.1021/acscatal.9b00384
  14. P.A. Bezrukov, A.V. Nashchekin, N.V. Nikonorov, A.I. Sidorov. Nauch.-Tekhn. Vestnik Inform. Tekhn., Mekh. i Opt., 21(4), 457(2021) (in Russian). DOI:10.17586/2226-1494-2021-21-4-457-462
  15. N. Youssef, S. Shaban, F. Ibrahim, A. Mahmoud. Egypt. J. Petroleum, 25(3), 317 (2016). DOI: 10.1016/j.ejpe.2015.07.017
  16. J. Xiong, Z. Li, S. Zhang, L. Wang, S. Dou. ACS Appl. Mater Interfaces, 6 (18), 15716 (2014). DOI:10.1021/am502516s
  17. P. Wang, B. Huang, Q. Zhang, X. Zhang, X. Qin, Y. Dai, J. Zhan, J. Yu, H. Liu, Z. Lou. Chem. Eur. J., 16, 10042 (2010). DOI: 10.1002/chem.200903361
  18. J. Jiang, L. Zhang. Chem. Eur. J., 17, 3710 (2011). DOI: 10.1002/chem.201002951
  19. Y-S. Ho, J. Hazard. Mat., 136 (3), 681 (2006). DOI: 10.1016/j.jhazmat.2005.12.043

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru