Luminescent properties of individual "Silicon-Vacancy" centers in CVD nanodiamonds grown on various substrates
Pasternak D. G.1, Kalashnikov D. A. 2, Leong V.2, Chia K. 2, Romshin A.M. 1, Kuznetsov S. V. 1, Martyanov A. K. 1, Sedov V. S. 1, Krivitsky L. A. 2, Vlasov I. I. 1
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Institute of Materials Research and Engineering Agency for Science Technology and Research (A*STAR), Singapore
Email: dg.pasternak@physics.msu.ru

PDF
The application of the technique of resonant excitation of photoluminescence at low temperatures using a narrow-band tunable laser significantly expands the possibilities of spectral investigation of individual luminescent centers in nanodiamonds, even in conditions of high concentrations of such centers. In this paper, a comparative analysis of the spectral characteristics of individual "Silicon-Vacancy" (SiV) centers in nanodiamonds grown with a spontaneous nucleation technique on germanium and silicon substrates is carried out. Studied diamond nanoparticles have a characteristic size of 300 nm and contain large ensembles of SiV centers. It was found that during the transition from silicon substrates, which are traditionally used in the CVD synthesis of diamonds, to germanium substrates, the spectral characteristics of the photoluminescence of SiV centers almost do not change. Keywords: nanodiamonds, luminescence, "Silicon-Vacancy", resonant excitation. DOI: 10.61011/EOS.2023.02.55790.21-23
  1. F. Jelezko, J. Wrachtrup. Phys. Stat. Solidi (a), 203 (13), 3207 (2006). DOI: 10.1002/pssa.200671403
  2. O.A. Shenderova, A.I. Shames, N.A. Nunn, M.D. Torelli, I.I. Vlasov, A. Zaitsev. J. Vacuum Science \& Technology B, 37 (3), 030802 (2019). DOI: 10.1116/1.5089898
  3. M.K. Bhaskar, R. Riedinger, B. Machielse, D.S. Levonian, C.T. Nguyen, E.N. Knall, H. Park, D. Englund, M. Lonv c ar, D.D. Sukachev, M.D. Lukin. Nature, 580 (7801), 60 (2020). DOI: 10.1038/s41586-020-2103-5
  4. K. Bian, W. Zheng, X. Zeng, X. Chen, R. Sto hr, A. Denisenko, S. Yang, J. Wrachtrup, Y. Jiang. Nature Commun., 12 (1), 2457 (2021). DOI: 10.1038/s41467-021-22709-9
  5. M. Feudis, A. Tallaire, L. Nicolas, O. Brinza, P. Goldner, G. Hetet, F. Benedic, J. Achard. Advanced Materials Interfaces, 7 (2), 1901408 (2019). DOI: 10.1002/admi.201901408
  6. D.G. Pasternak, J. Dai, D.A. Kalashnikov, V.S. Sedov, A.K. Martyanov, V.G. Ralchenko, L.A. Krivitsky, I.I. Vlasov. Phys. Stat. Solidi (a), 218 (5), 2000274 (2020). DOI: 10.1002/pssa.202000274
  7. B.V. Spitsyn, L.L. Bouilov, B.V. Derjaguin. J. Crystal Growth, 52 (1), 219 (1981). DOI: 10.1016/0022-0248(81)90197-4

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru