Birefringent structures with high transmittance written in fused silica by ultrashort laser pulses
Busleev N. I.1, Rupasov A. E.1,2, Kesaev V. V.1,2, Smirnov N. A.1,2, Kudryashov S. I.1, Zakoldaev R. A.2
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2ITMO University, St. Petersburg, Russia
Email: busleeni@lebedev.ru
The writing process of birefringent structures in the volume of fused silica by focused ultrashort laser pulses with wavelength in visible range and various values of pulse energy, pulse duration, repetition rate, numerical aperture and moving substrate velocity has been studied. The retardance value of fabricated structures has been measured and influence of the subsequent annealing of these structures has been studied. It was shown, that combination of writing layered structures with subsequent annealing provides structures with high homogeneity, required retardance value and high transmittance. Keywords: direct laser writing, femtosecond laser pulses, birefringence, annealing. DOI: 10.61011/EOS.2023.02.55777.3-23
- M. Beresna, M. Geceviv cius, P.G. Kazansky. Opt. Mater. Express, 1, 783-795, (2011). DOI: 10.1364/OME.1.000783
- A.E. Rupasov, P.A. Danilov, M.P. Smaev, M.S. Kovalev, A.S. Zolot?ko, A.A. Ionin, S.I. Kudryashov. Opt. i spectr., 128 (7), 918 (2020). DOI: 10.21883/OS.2020.07.49564.48-20
- R. Stoian. Appl. Phys. A, 126, 438 (2020). DOI: 10.1007/s00339-020-03516-3
- L. Rapp, R. Meyer, R. Giust, L. Furfaro, M. Jacquot, P.A. Lacourt, J.M. Dudley, F. Courvoisier. Sci. Rep., 6, 34286 (2016). DOI: 10.1038/srep34286
- S. Lavin-Varela, S. Madden, K. Yan, M. Ploschner, A.V. Rode, L. Rapp. Opt. Express, 30, 6016-6036 (2022). DOI: 10.1364/OE.449230
- S. Xu, H. Fan, Z.-Z. Li, J.-G. Hua, Y.-H. Yu, L. Wang, Q.-D. Chen, H.-B. Sun. Opt. Lett., 46, 536-539 (2021). DOI: 10.1364/OL.413177
- S.I. Kudryashov, P.A. Danilov, M.P. Smaev, A.E. Rupasov, A.S. Zolot'ko, A.A. Ionin, R.A. Zakoldaev. JETP Lett., 113, 493-497 (2021). DOI: 10.1134/S0021364021080075
- S.I. Kudryashov, P.A. Danilov, A.E. Rupasov, M.P. Smayev, A.N. Kirichenko, N.A. Smirnov, A.A. Ionin, A.S. Zolot'ko, R.A. Zakoldaev. Appl. Surf. Sci., 568, 150877 (2021). DOI: 10.1016/j.apsusc.2021.150877
- M. Sakakura, Y. Lei, L. Wang, Y.-H. Yu, P.G. Kazansky. Light Sci. Appl., 9, 15 (2020). DOI: 10.1038/s41377-020-0250-y
- G. Shayeganrad, X. Chang, H. Wang, C. Deng, Y. Lei, P.G. Kazansky. Opt. Express, 30, 41002-41011 (2022). DOI: 10.1364/OE.473469
- J. del Hoyo, R. Meyer, L. Furfaro, F. Courvoisier. Nanophotonics, 10, 1089-1097 (2021). DOI: 10.1515/nanoph-2020-0457
- C. Vetter, R. Giust, L. Furfaro, C. Billet, L. Froehly, F. Courvoisier. Materials, 14, 6749 (2021). DOI: 10.3390/ma14226749
- M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, F. Brisset. Laser Photonics Rev., 7, 953-962 (2013). DOI: 10.1002/lpor.201300043
- I.V. Gritsenko, M.S. Kovalev, N.G. Stsepuro, Y.S. Gulina, G.K. Krasin, S.A. Gonchukov, S.I. Kudryashov. Laser Phys. Lett., 19, 076201 (2022). DOI: 10.1088/1612-202X/ac7136
- M. Beresna, M. Geceviv cius, P.G. Kazansky, T. Gertus. Appl. Phys. Lett., 98, 201101 (2011). DOI: 10.1063/1.3590716
- R. Drevinskas, P.G. Kazansky. APL Photonics, 2, 066104 (2017). DOI: 10.1063/1.4984066
- E. Bricchi, P.G. Kazansky. Appl. Phys. Lett., 88, 111119 (2006). DOI: 10.1063/1.2185587
- Y. Wang, M. Cavillon, N. Ollier, B. Poumellec, M. Lancry. Phys. Status Solidi A, 218, 2100023 (2021). DOI: 10.1002/pssa.202100023
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.