Peculiarities of Excitation of a Particle in a Single-Level Quantum Well by an Extremely Short Attosecond Pulse
Arkhipov R. M.1,2, Arkhipov M. V.1, Belov P. A.1, Pakhomov A. V.1, Rosanov N. N. 1,2
1St. Petersburg State University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: arkhipovrostislav@gmail.com, m.arkhipov@spbu.ru, pavelbelov@gmail.com, antpakhom@gmail.com, nnrosanov@mail.ru

PDF
Using the solution of the time-dependent Schrodinger equation, the features of the excitation of a bound state of a particle in a one-dimensional rectangular quantum well of small depth by an extremely short light pulse are studied. The case of a shallow well with only one energy level is considered. In this case, the system is excited by an attosecond pulse whose duration is shorter than the characteristic time associated with the energy of the bound state of the particle in the well. It is shown that in this case the population of the bound state and the ionization probability are determined by the ratio of the electric area of the pulse to its atomic scale, which is inversely proportional to the well width. The calculation results showed that unipolar subcycle pulses with nonzero electric area can excite the system faster and more efficiently than bipolar pulses with zero area. The possibility of using unipolar gamma-ray pulses of zeptosecond duration for deuteron excitation is discussed, and numerical estimates of the required duration and electric area of the pulse are given. Keywords: extremely short pulses attosecond pulses, unipolar pulses, electric area of a pulse, atomic scale of electric area, one-dimensional quantum wells, nanostructures.
  1. F. Krausz, M. Ivanov. Rev. Mod. Phys., 81, 163 (2009)
  2. F. Calegari, G. Sansone, S. Stagira, C. Vozzi, M. Nisoli. J. Phys. B: Atomic, Molecular and Optical Physics, 49, 062001 (2016)
  3. J. Biegert, F. Calegari, N. Dudovich, F. Quere, M. Vrakking. J. Phys. B: Atomic, Molecular and Optical Physics, 54, 070201 (2021)
  4. E.A. Khazanov. Quantum. Electron., 52 (3), 208 (2022)
  5. K. Midorikawa. Nat. Photon., 16, 267 (2022)
  6. Y. Shou, R. Hu, Z. Gong, J. Yu, Jia erh Chen, G. Mourou, X. Yan, W. Ma. New J. Phys., 23, 053003 (2021)
  7. M.T. Hassan, T.T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A.M. Zheltikov, V. Pervak, F. Krausz, E. Goulielmakis. Nature, 530, 66 (2016)
  8. A.M. Zheltikov. Phys. Usp., 64, 370 (2021)
  9. D. Hui, H. Alqattan, S. Yamada et al. Nat. Photonics, 16, 33 (2022)
  10. P. Peng, Y. Mi, M. Lytova, et al. Nat. Photonics, 16, 45 (2022)
  11. M. Kretschmar, A. Hadjipittas, B. Major, J. Tummler, I. Will, T. Nagy, M.J.J. Vrakking, A. Emmanouilidou, B. Schutte. Optica, 9 (6), 639 (2022)
  12. R.M. Arkhipov, M.V. Arkhipov, N.N. Rosanov. Quantum Electronics, 50, 801 (2020)
  13. N.N. Rosanov, R.M. Arkhipov, M.V. Arkhipov. Phys. Usp., 61, 1227 (2018)
  14. H.-C. Wu, J. Meyer-ter-Vehn, Nat. Photonics, 6, 304 (2012)
  15. J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, Z. Xu. Sci. Rep., 8, 2669 (2018)
  16. G. Naumenko, M. Shevelev. J. Instrum., 13 (05), C05001 (2018)
  17. S.V. Sazonov, N.V. Ustinov. JETP Lett., 114, 380 (2021)
  18. A.V. Bogatskaya, E.A. Volkova, A.M. Popov. Phys. Rev. E, 105, 055203 (2022)
  19. M.V. Arkhipov, A.N. Tsypkin, M.O. Zhukova, A.O. Ismagilov, A.V. Pakhomov, N.N. Rosanov, R.M. Arkhipov. JETP Lett., 115, 1 (2022)
  20. I.E. Ilyakov, B.V. Shishkin, E.S. Efimenko, S.B. Bodrov, M.I. Bakunov. Opt. Express, 30 (9), 14978 (2022)
  21. A.S. Kuratov, A.V. Brantov, V.F. Kovalev, V.Yu. Bychenkov. Phys. Rev. E, 106, 035201 (2022)
  22. N.N. Rosanov, Opt. Spectrosc., 124 (1), 72 (2018)
  23. R.M. Arkhipov, M.V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, N.N. Rosanov. Opt. Lett., 44, 1202 (2019)
  24. R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, N.N. Rosanov. JETP Lett., 114 (3), 129 (2021)
  25. N. Rosanov, D. Tumakov, M. Arkhipov, R. Arkhipov. Phys. Rev. A, 104 (6), 063101 (2021)
  26. A. Pakhomov, M. Arkhipov, N. Rosanov, R. Arkhipov. Phys. Rev. A, 43103 (4), 043103 (2022)
  27. R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, N.N. Rosanov. Optics and Spectroscopy, 130 (3), 350 (2022)
  28. R.M. Arkhipov, P.A. Belov, M.V. Arkhipov, A.V. Pakhomov, N.N. Rosanov Kvantovaya elektronika, 52 (7), 610 (2022). (in Russian)
  29. M.F. Ciappina, J.A. Perez-Hernandez, A.S. Landsman, W.A. Okell, S. Zherebtsov et al. Rep. Prog. Phys., 80, 054401 (2017)
  30. L. Seiffert, S. Zherebtsov, M.F. Kling, T. Fennel. Adv. Phys.: X, 7 (1), 2010595 (2022)
  31. L.D. Landau, E.M. Lifshitz. Quantum mechanics (Pergamon, 1974)
  32. A.B. Migdal. Sov. Phys. JETP, 9, 1163 (1939)
  33. J. Crank, P. Nicolson. Mathematical Proceedings of the Cambridge Philosophical Society, 43 (1), 50--67 (1947)
  34. D. Bohm. Quantum theory (Prentice-Hall, NY., 1952)
  35. C. Hernandez-Garcia, J.A. Perez-Hernandez, T. Popmintchev, M.M. Murnane, H.C. Kapteyn, A. Jaron-Becker, A. Becker, L. Plaja. Phys. Rev. Lett., 111, 033002 (2013)
  36. Zh.I. Alferov. Semiconductors, 32, 1 (1998)
  37. E.L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science, 2005)
  38. L. Shi, I. Babushkin, A. Husakou, O. Melchert, B. Frank, J. Yi, G. Wetzel, A. Demircan, C. Lienau, H. Giessen, M. Ivanov, U. Morgner, M. Kovacev. Laser \& Photonics Reviews, 15 (8), 2000475 (2021)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru