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Peculiarities of Excitation of a Particle in a Single-Level Quantum Well by

an Extremely Short Attosecond Pulse
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Using the solution of the time-dependent Schrödinger equation, the features of the excitation of a bound state

of a particle in a one-dimensional rectangular quantum well of small depth by an extremely short light pulse are

studied. The case of a shallow well with only one energy level is considered. In this case, the system is excited by

an attosecond pulse whose duration is shorter than the characteristic time associated with the energy of the bound

state of the particle in the well. It is shown that in this case the population of the bound state and the ionization

probability are determined by the ratio of the electric area of the pulse to its atomic scale, which is inversely

proportional to the well width. The calculation results showed that unipolar subcycle pulses with nonzero electric

area can excite the system faster and more efficiently than bipolar pulses with zero area. The possibility of using

unipolar gamma-ray pulses of zeptosecond duration for deuteron excitation is discussed, and numerical estimates

of the required duration and electric area of the pulse are given.

Keywords: extremely short pulses attosecond pulses, unipolar pulses, electric area of a pulse, atomic scale of
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Introduction

To date, the progress in reducing the duration of

electromagnetic pulses has resulted in the possibility of

getting the pulses whose duration is in the attosecond range

(1 as = 10−18 s) [1–5]. In the so-called cascade scheme, that

was recently proposed, the duration of the generated pulses

is able to reach the record values of 3 as [6]. And in the

optical range, it is possible to generate the pulses with a

duration of hundreds of attoseconds [7], which can be used

to study the ultrafast dynamics of wave packets in various

materials [7–11].
A further reduction in the duration of electromagnetic

pulses inevitably leads to getting the already unipolar half-

period pulses, which contain a half-wave of a field of the

same polarity [12]. Unlike conventional bipolar multicycle

pulses, the electric area of these pulses can be different

from zero, which is defined as the integral of the electric

field strength E with respect of time t at a given point in

space [13]

SE(r) =

∫

E(r, t)dt. (1)

The interest in obtaining unipolar pulses has increased

sharply in recent years, see the review [12] and the cited

publications. Recently, there have also been many papers

that tackle various situations in which it is possible to

obtaining such impulses, see, for example, [14–21]. Due

to the unidirectional effect on micro-objects, they can be

used for faster and more efficient excitation of quantum
systems, acceleration of charges and other applications [12].
In point of fact, it was previously shown that if the

duration of such a half-period pulse τp was shorter than
the characteristic time associated with the ground state

energy Tg = 2π~/E1 (where E1 — the energy of the
particle in the ground state), then they would be able to

excite micro-objects faster and more efficiently, compared

to bipolar multicycle pulses [22–27]. To quantify the
degree of impact of such extremely short pulses (ESP)
on micro-objects, a new physical quantity — atomic scale

of electrical pulse area was previously introduced, which
makes sense of the

”
of
”
intrinsic“ momentum of the system

and is inversely proportional to the size of the system of
interest [24,25].
Further, when τp < Tg , the ESP impact on a quantum

system, as shown by the results of the approximate solution
and direct numerical integration of the time-dependent

Schrödinger equation (TDSE), is determined by the ratio
of the electrical area of the pulse to its atomic scale and not

by the pulse energy [24–28]. This conclusion is universal

for a wide class of quantum systems — atoms [24,25],
molecules [23,26], ions [27] and nanostructures [28].
The paper [28], based on the TDSE solution, studied the

ESP interaction with nanostructures, which were simulated

using a one-dimensional model of a rectangular potential

well with infinitely deep walls. However, this model is very
approximate, and in practice it is more often necessary to

deal with potential wells of finite sizes. Recently, there has
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Figure 1. A one-dimensional rectangular potential well of finite

depth in which there is only single energy level.

been considerable interest in the interaction of attosecond

and femtosecond pulses not only with atomic systems, but

also with various nanostructures, for instance, with spherical

nanoparticles [29,30]. However, these studies use long

bipolar pulses.

This paper, based on the approximate and numerical

solution of the TDSE, studies the ESP interaction with a

duration of τp < Tg with a one-dimensional nanostructure.

The latter is simulated using a one-dimensional rectangular

potential well of shallow depth, when there is only single

energy level in the well (Fig. 1). It has been shown, that the

level population and the probability of ionization are also

determined by the ratio of the electrical area of the pulse to

its atomic scale. In this paper is also discussed the use of

unipolar zeptosecond pulses in nuclear physics for deuteron

excitation.

Excitation of a particle in a
one-dimensional shallow rectangular
potential well by an extremely short light
pulse

Let us consider a particle in a one-dimensional rect-

angular potential well of finite depth (one-dimensional

nanostructure). The stationary Schrödinger equation has the

form [31]

ψ′′ +
2m
~2

(E −U(x))ψ = 0. (2)

The potential energy of a particle in such a potential well is

described by the expression

U(x) =

{

0 |x | < a/2,

U0 |x | > a/2,
(3)

where a — is the well width. Schematically, this well is

shown in Fig. 1.

The problem of finding the stationary states of a particle

in such a well can be easily solved analytically [31]. Below
we are interested in the case of a shallow well in which there

can be only single energy level (see Fig. 1). In this case, the

expression for the particle energy looks like this [31]

E = U0 −
ma2

2~2
U2
0 . (4)

The eigen function of the bound state can also be easily

found. Omitting the detailed calculations (see [31]), let us
provide expressions for the wave function of a particle inside

the well and outside of it.

Inside the well at |x | < a/2:

ψ′′ +
2m
~2

Eψ = 0 → ψ = α1 cos(kx), k2 =
2m
~2

E.

Outside of the well at x > a/2:

ψ′′ +
2m
~2

(E −U0)ψ = 0 → ψ = α2 exp(−κx),

κ2 =
2m
~2

(U0 − E).

The relationship between the constants α1 and α2 is found

from the conditions for matching the wave functions and its

first derivative at the boundary of the well. It is not difficult

to show, that α2 = α1 cos(ka/2) exp( κa
2

).
It is not difficult to find the value α1 from the wave

function normalization condition
∫

ψ2
1(x)dx =1. It has the

form

α1 = 1
/

[

a
2

+
sin ka
2k

+
q2

κ
e−κa

]1/2

.

To describe the system interaction with the ESP field, let

us follow the same approach that was used earlier in the

papers [22–28]. The interaction of a particle located in such

a well with the ESP field is described by the time-dependent

Schrödinger equation (TDSE) for the electron wave function

9(x , t) [31]

i~
∂

∂t
9(x , t) = [H0 − qxE(t)]9(x , t). (5)

Here

H0 = −
~
2

2m
+ U(x)

— the proper Hamiltonian of the system, U(x) — potential

energy of the particle described by the formula (3), m —
electron mass q — electron charge, ~ — reduced Planck

constant. If the pulse duration is shorter than Tg , then for

the TDSE approximate solution in (4), as in the papers [22–
28], we will use the approximation of sudden perturbations

introduced by Migdal [32]. In this approximation, the

expression for the electron wave function after the pulse

has the form [22–28]

9+(x) = ψ0(x)ei q
~

SE x , (6)

where ψ0(x) is the wave function before the pulse arrival.

If the particle was in a bound state with its eigen function

ψ1(x) before the pulse arrival, then the amplitude of the
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bound state a1 is the projection of ψ1(x) onto the wave

function of the system after the pulse 9+(x) (6) and is

given by the expression

a1 =

∞
∫

−∞

ψ2
1(x)ei q

~
SE x dx . (7)

In this case, the population of the bound state is determined

in terms of the square of the amplitude modulus a1.

Using the (7) and the above expression for the intrinsic

wave function of the bound state of a particle in the well,

one can obtain the following expression for the amplitude

of the bound state of the particle in the well:

a1 =
sin(SE/S0,QW )

qSE/~
+

sin(ka + SE/S0,QW )

4k + 2qSE/~

+
sin(ka − SE/S0,QW )

4k − 2qSE/~
+ 2Re

(

−κa + iaSE/S0,QW

κ − iSE/S0,QW

)

.

(8)
Here the S0,QW = 2~/qa —is an atomic scale of the area for

a quantum well inversely proportional to its width a . The

corresponding probability of ionization is w i = 1− |a1|
2.

Thus, the population of the bound state of a particle in

a rectangular well and the probability of ionization are

determined by the ratio of the electric area of the pulse

to its scale. This is consistent with the conclusions drawn

earlier for atomic and molecular systems, and the particles

in a well with infinitely high stacks [22–28].

Calculation results and analysis of the
results obtained

In numerical calculations, the system was excited by

the ESP of the Gaussian form Ee(t) = E0e
−t2

τ 2p cos(ωpt),
ωp = 2π/Tp, Tp — field period. For ESP the values ωp

and Tp have a conditional meaning. The well width had the

value a = 1.2 nm. Pulse field amplitude E0 = 3 · 108 V/cm,

frequency ωp = 14 · 1015 rad/s (wavelength λa = 134.6 nm,

period Tp = 2π/ωp = 448.8 as). With the specified param-

eters, the time Tg = 16 fs.

To illustrate the population dependence |a1|
2 after the

passage of the pulse, we have calculated the dependence

of |a1|
2 on the parameters of the exciting pulses from

the duration of exciting pulses τp (see fig. 2). The

calculation was carried out using the approximation of

sudden perturbations as per the analytical formula (7),
which corresponds to the solid line in Fig. 2. Also, the

population was calculated using the numerical solution of

the TDSE by the Crank-Nicholson method [33]. The result

of the numerical calculation is shown by a dotted line in

Fig. 2.

It can be seen from the figure that the results of analytical

and numerical calculations are qualitatively similar to each

other in terms of the form. Similar results are obtained in

the case of a deeper well, in which there are more levels.
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Figure 2. Population dependence of the bound state |a1|
2

particles in a one-dimensional well from the pulse duration τp.

The solid line — is a result of calculation in the approximation of

sudden disturbances, the dashed line — is a result of numerical

calculation using the TSE.

Despite some notable quantitative differences between the

results of numerical and analytical calculations, the figure

shows a trivial result — half-cyclepulses with a nonzero

electrical area almost completely empty the bound state (in
the range τp = 0.1Tp − 0.4Tp), which leads to ionization of

the particle from the well. When the pulse duration tends

to the period of the field, its electric area tends to zero, and

the population of the state |a1|
2 tends to 1. That is, bipolar

pulses with SE = 0 have no effect on the system, which is

consistent with the results of the previous studies [22–28].

Application of unipolar pulses in nuclear
physics — deuteron excitation

The above model of a potential well containing only

single energy level is used, for example, to describe

the deuteron [34]. A deuteron consists of a proton

and a neutron. They are connected by a force that

is characterized by a rectangular potential well in

which there is only single energy level [34]. This

well radius is r = 2.8 · 10−13 cm. The binding energy

between them E = 2.23Me = 3.57 · 10−6 eng. Time

Tg = 2π~

E = 1.84 · 10−21 s = 1.84 zs = 0.0018 as. The

value of the area measure for the deuteron S0,QW =
= 2~/qr ∼ 1.56 · 10−5 erg·s/cm·ESU. For comparison: for

a hydrogen atom, this value is 5 orders of magnitude

lower than S0,H ∼ 10−10 erg·s/cm·ESU [24]. Thus, for

effective excitation of deuterons, the X-ray and gamma-ray

pulses in the zeptosecond duration range are needed

(1 zs = 10−21 s) [35]. The possibility of using unipolar

gamma-quanta for effective control of nuclear reactions was

also discussed in [16].
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Conclusion

In this paper, we consider the problem of a particle exci-

tation in a one-dimensional rectangular potential well, with

a single energy level, using an ESP of attosecond duration,

which is less than the time associated with the energy of

the bound state, τp < Tg . Such a model of a rectangular

well with one energy level can describe nanostructures,

nanoparticles with shallow potential wells [36–38], and is

also used in nuclear physics, for example, to describe the

deuteron [34].
Based on the approximate analytical solution of the time-

dependent Schrödinger equation (TDSE), an expression is

obtained for the amplitude of the bound state of a particle in

such a well after the passage of a pulse. It has been shown

that the population of the bound state is determined by the

ratio of the electrical area of the pulse to its atomic scale.

Once again this confirms the earlier conclusion that unipolar

half-period pulses are able to excite the system more quickly

than single-cycle pulses with zero area. The results of the

population calculation obtained analytically are qualitatively

consistent with the results of the calculation carried out on

the basis of the numerical solution of the TDSE.

The results obtained can be used in the theoretical

description of the excitation of nanoparticles, quantum

dots, semiconductor nanostructures based on quantum wells

by optical half-period attosecond pulses and in nuclear

physics, for example, for the excitation of a deuteron using

zeptosecond gamma and X-ray pulses.
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