Synthesis of boron carbide by the electric arc method in open air from carbon of various origins
Martynov R. S.1, Pak A. Ya.1, Mamontov G. Ya.1, Volokitin O. G.2, Yankovsky S. A.1,3, Gumovskaya A. A.1, Povalyaev P. V.1,3, Bolatova Zh.1
1Tomsk Polytechnic University, Tomsk, Russia
2Tomsk state university of architecture and building, Tomsk, Russia
3Federal State Budgetary Educational Institution of Higher Education, Kemerovo,. Russia
Email: rsm6@tpu.ru

PDF
The paper presents the results of experimental studies on the implementation of electric arc synthesis of boron carbide using carbon with different morphology and origin as a feedstock: carbon fibers, flake graphite, carbon obtained by pyrolysis of plant waste, namely, pine sawdust and cedar nuts husks. A feature of the electric arc method used is its implementation using an original plasma reactor using atmospheric air as a working gas medium. Oxidation of feedstock and synthesis products in the working cycle of the reactor is prevented due to the generation of CO and CO2 gases in the reaction zone. The possibility of obtaining a material containing micron and submicron boron carbide crystals in a graphite matrix has been experimentally shown. Also, the paper presents information about the features of the oxidation processes of the obtained materials in comparison with commercial samples of boron carbide. Keywords: boron carbide, electric arc synthesis, carbon fibers, flake graphite, carbon of plant origin.
  1. F. Thevenot. J. European Ceramic Societty, 6, 205 (1990). DOI: 10.1016/0955-2219(90)90048-K
  2. M. Kakiage. J. POWTEC, 221, 257 (2012). DOI: 10.1016/J.POWTEC.2012.01.010
  3. M.P.L.N. Rao, G.S. Gupta, P. Manjunath, S. Kumar, A.K. Suri, N. Krishnamurthy, C. Subramanian. J. IJRMHM, 27, 621 (2009). DOI: 10.1016/J.IJRMHM.2008.10.004
  4. T.K. Roy, C. Subramanian, A.K. Suri. CERAM INT, 32, 227 (2006). DOI: 10.1016/j.ceramint.2005.02.008
  5. S. Sasaki. J. STAM, 6, 181 (2005). DOI: 10.1016/j.stam.2004.11.010
  6. L.P. Frank. J. APSUSC, 258, 2639 (2012). DOI: 10.1016/j.apsusc.2011.10.110
  7. A. Mishra. J. APSUSC, 3 (4), 373 (2015). DOI: 10.1016/j.jascer.2015.08.004
  8. F. Zhang, Zh. Fu, J. Zhang, H. Wang, W. Wang, Yu. Wang, J. Shi. J. CERAMINT, 36, 1491 (2010). DOI: 10.1016/J.CERAMINT.2010.02.013
  9. Y. Huang. J. CEJ, 220, 143 (2013). DOI: 10.1016/J.CEJ.2013.01.059
  10. I. Solodkyi. J.CERAMINT, 45, 168 (2019). DOI: 0.1016/J.CERAMINT.2018.09.148
  11. P.G. Karandikar. Mater. Sci., 29, 163 (2009). DOI: 10.1002/9780470456286.CH16
  12. C. Wang. J. CERAMINT, 40 (6), 7915 (2014). DOI: 10.1016/J.CERAMINT.2013.12.139
  13. D. Zhou, S. Seraphin, J. C. Withers. Chem. Phys. Lett., 234 (1--3), 233 (1995). DOI: 10.1016/0009-2614(95)00039-7
  14. T.S. Orlova, V.V. Popova, J.Q. Cancap, D.H. Maldonado. J. JEURCERAMSOC, 31, 1317 (2011). DOI: 10.1016/J.JEURCERAMSOC.2010.06.015
  15. Q. Wang. J. PARTIC, 7, 199 (2009). DOI: 10.1016/j.partic.2009.01.011
  16. J. Li, Sh. Yu, Min Ge, X. Wei, Y. Qian. J. CERAMINT, 41, 7853 (2015). DOI: 10.1016/J.CERAMINT.2015.02.122
  17. A. Gomez-Marti n. J. CERAMINT, 42, 16220 (2016). DOI: 10.1016/J.CERAMINT.2016.07.151
  18. M. Yu. J. CERAMINT, 46, 5536 (2020). DOI: 10.1016/j.ceramint.2019.11.104
  19. E.O. Ademola, F.O. Bamigboye. Proceedings of the iSTEAMS Multidisciplinary Cross Border Conference University of Professional Studies (Accra Ghana, 2016)
  20. C.A. Eheverria, Farshid Pahlevani, S. Lim, V. Sahajwalla. J. JCLEPRO, 312, 127808 (2021). DOI: 10.1016/j.jclepro.2021.127808
  21. A.Ya. Pak, P.S.Grinchuk, A.A. Gumovskaya, Yu.Z. Vassilyeva. J. CERAMINT, 48 (3), 3818 (2022). DOI: 10.1016/j.ceramint.2021.10.165
  22. A.Y. Pak. J. IJRMHM, 93, 105343 (2020). DOI: 10.1016/j.ijrmhm.2020.105343
  23. R.S. Martynov, A.Ya. Pak, O.G. Volokitin, G.Ya. Mamontov. Ustroystvo dlya polycheniya poroshka na osnove karbida bora. Pat. N 210733 RF, MPK C01B 32/991 (2017.01) B22F 9/14 (2006.01) SPK C01B 32/991 (2022.02) B22F 9/14 (2022.02). N 2022102107: zayvl. 28.02.2022 g., opubl. 28.04.2022. (in Russian)
  24. K.V. Slyusarskiy, K.B. Larionov, V.I. Osipov, S.A. Yankovsky, V.E. Gubin, A.A. Gromov. J. FUEL, 191, 383 (2017). DOI: 10.1016/J.FUEL.2016.11.087
  25. L. Xiaogang, Y. Zhou, D. Liu, B. Yang. NRL, 5, 252 (2010). DOI: 10.1007/s11671-009-9474-8
  26. D. Zhou, S. Seraphin, J.C. Withers. CHEMICALPL, 234, 233 (1995). DOI: 10.1016/0009-2614(95)00039-7
  27. Y. Saito, T. Matsumoto, K. Nishikubo. JCR, 172, 163 (1997). DOI: 10.1016/S0022-0248(96)00709-9
  28. Yu.L. Krutskiy, G.G. Galevskiy, A.A. Kornilov. Poroshkovaya metallurgiya, 2, 47 (1983) (in Russian)
  29. D. Liang, J.Liu, H. Li. J. Therm. Anal. Calorim., 128, 1771 (2017). DOI: 10.1007/s10973-016-5989-2
  30. A. Jain, S. Anthonysamy. J. Therm. Anal. Calorim., 122, 645 (2015). DOI: 10.1007/s10973-015-4818-3

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru