On the features of breaking a microjet of dilute polymer solution into main and satellite microdroplets under external vibration perturbation
Khomutov N.A.1, Semyonova A.E.1, Belonogov M.V.1, Antonio Di Martino1, Khan E.A.1, Piskunov M.V.1
1Tomsk Polytechnic University, Tomsk, Russia
Email: streetstoryteller@gmail.com

PDF
An experimental study of the morphology of the laminar microjet flow of diluted aqueous solutions of sodium alginate without and with the addition of hydroxyethyl cellulose after a nozzle subject to external vibration stimulation by the action of the reverse piezoelectric effect was carried out. We studied the influence of the polymer concentration in the solution (0.5-5 mg/ml), the flow rate of the liquid (4-26 ml/min), and the frequency of the current of external perturbation (0-1.2 kHz) on the capillary crushing of the microjet with a diameter of about 210 um in the range of Ohnesorge numbers from 0.046 to 1.88 and Reynolds numbers 0.7 to 470. The modes of microjet flow and crushing on microdroplets with indication of boundaries of transitions between them are selected, and a general map of modes is built. Taking into account the polymer concentration in the solution, the dependence of the microjet fracture length on its velocity is shown. The conditions of monodisperse microjet destruction with equidistant arrangement of the main microdroplets in the flow are determined, which are related to an optimal balance between the molecular mass of the polymer in the solution, the intensity of external disturbance and the time of stress relaxation in polymer viscoelastic microjets. The role of formation of structures such as "beads-on-filament" in capillary destruction of microjet with identification of cases of absence of occurrence of "satellite" microdroplets from liquid threads between the main microdroplets has been studied. The results are applied to technologies based on in-air microfluidics (bioengineering and additive technologies), dealing with heterogeneous fluids with viscoelastic properties. Keywords: Plateau-Rayleigh instability, reverse piezoelectric effect, monodisperse breakup, relaxation time, microjet flow.
  1. H. Wijshoff. Phys. Rep., 491, 77-177 (2010). DOI: 10.1016/j.physrep.2010.03.003
  2. D. Serp, E. Cantana, C. Heinzen, U. Von Stockar, I.W. Marison. Biotechnol. Bioeng., 70, 41-53 (2000). DOI: doi.org/10.1002/1097-0290(20001005)
  3. C.W. Visser, T. Kamperman, P.L. Karbaat, D. Lohse, M. Karperien. Sci. Adv. American Association for the Advancement of Science, 4 (2018). DOI: 10.1126/sciadv.aao1175
  4. M. Neukotter, S. Jesinghausen, H.-J. Schmid. Rheol. Acta, 61, 499-521 (2022). DOI: 10.1007/s00397-022-01339-y
  5. F. Del Giudice, S.J. Haward, A.Q. Shen. J. Rheol. (N.Y.N.Y). 61, 327-337 (2017). DOI: 10.1122/1.4975933
  6. D. Baumgartner, G. Brenn, C. Planchette. Phys. Rev. Fluids, 5, 103602 (2020). DOI: 10.1103/PhysRevFluids.5.103602
  7. Y. Christanti, L.M. Walker. J. Rheol. (N.Y.N.Y). 46, 733-748 (2002). DOI: 10.1122/1.1463418
  8. N. Blanken, M.S. Saleem, M.-J. Thoraval, C. Antonini. Curr. Opin. Colloid Interface Sci., 51, 101389 (2021). DOI: 10.1016/j.cocis.2020.09.002
  9. A.E. Ashikhmin, N.A. Khomutov, M.V. Piskunov, V.A. Yanovsky. Appl. Sci., 10 (2020). DOI: 10.3390/app10020685
  10. M. Piskunov, A. Semyonova, N. Khomutov, A. Ashikhmin, V. Yanovsky. Phys. Fluids, 33, 83309 (2021)
  11. M. Piskunov, A. Semyonova, N. Khomutov, A. Ashikhmin, V. Yanovsky. Int. J. Heat Mass Transf., 185, 122442 (2022). DOI: 10.1063/5.0059079
  12. J. Eggers. Rev. Mod. Phys., 69, 865-930 (1997). DOI: 10.1103/RevModPhys.69.865
  13. A.H. Lefebvre, V.G. McDonell. Atomization and Sprays, 2, 300 (2017). DOI: 10.1201/9781315120911
  14. W.T. Pimbley, H.C. Lee. IBM J. Res. Dev., 21, 21-30 (1977). DOI: 10.1147/rd.211.0021
  15. J.H. Hilbing, S.D. Heister. Phys. Fluids, 8, 1574-1581 (1996). DOI: 10.1063/1.868931
  16. A.U. Chen, O.A. Basaran. Phys. Fluids, 14, L1-L4 (2002). DOI: 10.1063/1.1427441
  17. U. Prub e, J. Dalluhn, J. Breford, K.-D. Vorlop. Chem. Eng. Technol., 23, 1105-1110 (2000). DOI: 10.1002/1521-4125(200012)23:12
  18. T. Kamperman, V. Trikalitis. M. Karperien, C.-W. Visser, J. Leijten. ACS Appl. Mater. Interfac., 10, 23433-23438 (2018). DOI: 10.1021/acsami.8b05227
  19. V. Nedovic, V. Manojlovic, U. Pruesse, B. Bugarski, J. Djonlagic, K. Vorlop. Chem. Ind. Chem. Eng. Q., 12, 53-57 (2006). DOI: 10.2298/CICEQ0601053N
  20. D. Baumgartner, W. Bernard, B. Weigand, G. Lamanna, G. Brenn, C. Planchette. J. Fluid Mech., 885 (2020). DOI: 10.1017/jfm.2019.967
  21. D. Baumgartner, G. Brenn, C. Planchette. Int. J. Multiph. Flow., 150, 104012 (2022). DOI: 10.1016/j.ijmultiphaseflow.2022.104012
  22. D. Baumgartner, G. Brenn, C. Planchette. J. Fluid Mech., 937 (2022). DOI: 10.1017/jfm.2022.107
  23. C. Liu, T. Jin, W. Liu, W. Hao, L. Yang, L. Zheng. LWT, 148, 111770 (2021). DOI: 10.1016/j.lwt.2021.111770
  24. D.W. Bousfield, R. Keunings, G. Marrucci, M.M. Denn. J. Nonnewton. Fluid Mech., 21, 79-97 (1986). DOI: 10.1016/0377-0257(86)80064-7
  25. J. Li, M.A. Fontelos. Phys. Fluids, 15, 922-937 (2003). DOI: 10.1063/1.1556291
  26. C. Clasen, J. Eggers, M. Fontelos, J. Li, G. McKinley. J. Fluid Mech., 556, 283-308 (2006). DOI: 10.1017/S0022112006009633
  27. R. Sattler, S. Gier, J. Eggers, C. Wagner. Phys. Fluids, 24, 23101 (2012). DOI: 10.1063/1.3684750
  28. R.P. Mun, J.A. Byars, D.V. Boger. J. Nonnewton. Fluid Mech., 74, 285-297 (1998). DOI: 10.1016/S0377-0257(97)00074-8

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru