Tarasenko V.F.
1, Baksht E. Kh.
1, Vinogradov N. P.
1, Sorokin D.A.
11Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
Email: vft@loi.hcei.tsc.ru, BEH@loi.hcei.tsc.ru, vinikitavin@mail.ru, SDmA-70@loi.hcei.tsc.ru
Attention to the study of the radiation characteristics of streamer discharges in atmospheric air at pressures of a fraction of a Torr unit is primarily associated with obtaining new data on high-altitude discharges, including red sprites. This paper presents the results of studying the characteristics of the radiation of a streamer discharge in low-pressure air upon initiation of ionization waves (streamers) by a repetitively pulsed barrier discharge. It has been established that at air pressures of Delta p=0.08-3 Torr, the lines of the second positive, first negative, and first positive nitrogen systems have the highest intensities in the wavelength range of Deltaλ=280-900 nm, and their contribution to the spectral radiation energy density depends on the discharge region and pressure. The emission bands of the first positive nitrogen system give the red color of the ionization waves, however, the highest intensities under these conditions are recorded on the lines of the second positive and first negative nitrogen systems. It is shown that when the pressure decreases to 0.04 Torr or less, the spectrum and color of the streamer discharge, while maintaining the amplitude of the voltage pulses, changes significantly. New lines and bands appear in it, including intense lines of atomic hydrogen, which is due to an increase in the reduced electric field strength, respectively, in the electron temperature. This leads to the dissociation of molecular gases that are part of the air, as well as those adsorbed by the chamber walls. Keywords: emission spectra, streamer discharge, air, low pressures.
- C.J. Rodger. Rev. Geophys., 37 (3), 317 (1999)
- V.P. Pasko. Plasma sources science and technology, 16, S13 (2007). DOI: 10.1088/0963-0252/16/1/S02
- J. Qin, V.P. Pasko, M.G. McHarg, H.C. Stenbaek-Nielsen. Nature commun., 5 (1), 1 (2014). DOI: 10.1038/ncomms4740
- C.L. Kuo, E. Williams, T. Adachi, K. Ihaddadene, S. Celestin, Y. Takahashi, R.R. Hsu, H.U. Frey, S.B. Mende. Front. Earth Sci., 9, 1102 (2021). DOI: 10.3389/feart.2021.687989
- S. Nnadih, M. Kosch, J. Mlynarczyk. J. Atmosph. Solar-Terr. Phys., 225, 105760 (2021). DOI: 10.1016/j.jastp.2021.105760
- M. Singh, P.K. Sharma, P.P. Pathak. J. Electromag. Analys. Appl., 14 (3), 31 (2022). DOI: 10.4236/jemaa.2022.143003
- D.D. Sentman, E.M. Wescott. Geophys. Res. Lett., 20 (24), 2857 (1993)
- D.D. Sentman, E.M. Wescott, D.L. Osborne, D.L. Hampton, M.J. Heavner. Geophys. Res. Lett., 22 (10), 1205 (1995)
- G.K. Garipov, B.A. Khrenov, P.A. Klimov, V.V. Klimenko, E.A. Mareev, O. Martines, E. Mendoza, V.S. Morozenko, M.I. Panasyuk, I.H. Park, E. Ponce, L. Rivera, H. Salazar, V.I. Tulupov, N.N. Vedenkin, I.V. Yashin. J. Geophys. Res.: Atmosph., 118 (2), 370 (2013). DOI: 10.1029/2012JD017501
- T. Neubert, N. O stgaard, V. Reglero, O. Chanrion, C.A. Oxborrow, A. Orr, M. Tacconi, O. Hartnack, D.D. Bhander. Space Sci. Rev., 215 (2), 1 (2019). DOI: 10.1007/s11214-019-0592-z
- R.A. Marshall, U.S. Inan. Radio Science, 41, RS6S43 (2006). DOI: 10.1029/2005RS003353
- T. Kanmae, H.C. Stenbaek-Nielsen, M.G. McHarg, R.K. Haaland. J. Phys. D., 45 (27), 275203 (2012). DOI: 10.1088/0022-3727/45/27/275203
- U. Ebert, S. Nijdam, C. Li, A. Luque, T. Briels, E. van Veldhuizen. J. Geophys. Res.: Space Phys., 115, A00E43 (2010). DOI: 10.1029/2009JA014867
- J. Qin, S. Celestin, V.P. Pasko, S.A. Cummer, M.G. McHarg, H.C. Stenbaek-Nielsen. Geophys. Res. Lett., 40 (17), 4777 (2013). DOI: 10.1002/grl.50910
- E. Williams, M. Valente, E. Gerken, R. Golka. Sprites, Elves and Intense Lightning Discharges (Springer, Dordrecht. 2006), p. 237--251
- V.F. Tarasenko, E.A. Sosnin, V.S. Skakun, V.A. Panarin, M.V. Trigub, G.S. Evtushenko. Physics of Plasmas, 24 (4), 043514 (2017). DOI: 10.1063/1.4981385
- V.S. Kuznetsov, E.A. Sosnin, V.A. Panarin, V.S. Skakun, V.F. Tarasenko. Opt. Spectrosc., 125 (3), 324 (2018). DOI: 10.1134/S0030400X18090175
- V. Tarasenko, N. Vinogradov, E. Baksht, D. Sorokin. J. Atmosph. Sci. Res., 05 (03), 26 (2022). https://doi.org/10.30564/jasr.v5i3.4858
- E.H. Baksht, N.P. Vinogradov, V.F. Tarasenko. Optika atmosfery i okeana, 35 (9), 777 (2022). (in Russian). DOI: 10.15372/AOO20220911
- E.E. Remsberg, B.T. Marshall, M. Garcia-Comas, D. Krueger, G.S. Lingenfelser, J. Martin-Torres, M.G. Mlynczak, J.M. Russell III, A.K. Smith, Y. Zhao, C. Brown. J. Geophys. Res.: Atmosph., 113, D17101 (2008). DOI: 10.1029/2008JD010013
- E.R. Williams. Phys. Today, 54 (11), 41 (2001)
- T. Shao, V.F. Tarasenko, C. Zhang, M.I. Lomaev, D.A. Sorokin, P. Yan, A.V. Kozyrev, E.Kh. Baksht. J. Appl. Phys., 111 (2), 023304 (2012). DOI: 10.1063/1.3677951
- A.A. Heneral. Opt. Spectrosc., 127 (5), 778 (2019). DOI: 10.1134/S0030400X19110092
- D.M. Philips. J. Phys. D., 9 (3) 507 (1975). DOI: 10.1088/0022-3727/9/3/017
- P. Paris, M. Aints, F. Valk, T. Plank, A. Haljaste, K.V. Kozlov, H.-E. Wagner. J. Phys. D., 38 (21), 3894 (2005). DOI: 10.1088/0022-3727/38/21/010
- C.O. Laux. Radiation and Nonequilibrium Collisional-Radiative Models. In: Physico-Chemical of High Enthalpy and Plasma Flows. von Karman Institute Lecture Series 2002-2007. Fletcher D, Carbonnier J-M, Sarma GSR, Magin T. Eds. (Rhode Saint Genese, Belgium, 2002)
- N. Britun, M. Gaillard, A. Ricard, Y.M. Kim, K.S. Kim, J.G. Han. J. Phys. D., 40 (4) 1022 (2007). DOI: 10.1088/0022-3727/40/4/016
- Facebook. Available online: http://www.facebook.com/frankie.lucena.1 (accessed on 01.11.2021)
- Y. Goto, Y. Ohba, K. Narita. J. Atmosph. Electr., 27 (2), 105 (2007).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.