Broadening and shifting of the carbon monoxide rotational lines in a wide temperature range: calculations in the framework of the classical impact theory for CO-He
Ivanov S.V.1
1Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
Email: serg.ivanov.home@mail.ru

PDF
The classical impact theory of Gordon is used to calculate half-widths and shifts of spectral lines of the pure rotational band of 12C16O isotopologue broadened by He. Two rotational transitions are examined: J=0-> J=1 and J=1-> J=2 in the wide temperature range from 1.3 to 600 K. The main purpose of this work is the study of the validity limits of classical impact theory at low temperatures. Dynamical calculations were performed on the accurate CO-He ab initio potential energy surface. The results of calculations are in good agreement with experimental data with the exception of very low temperatures. The contributions of collisions of different types (elastic, inelastic, quasibound complexes) are clearly examined in the classical picture frame. It is shown that the mismatches between classical theory and measurements are caused by the too high contribution of elastic collisions into broadening and shift in the present variant of theoretical model. The idea in the spirit of the Weisskopf theory is applied to try to diminish this contribution. The classical results are also compared with the results of fully quantum close coupling calculations made with using four CO-He interaction potentials. The roots of discrepancies at low temperatures as well as the virtues and the shortcomings of a classical approach are discussed. Keywords: collisional line broadening and shift, intermolecular interactions, classical impact theory, classical trajectory method, quasibound complexes.
  1. J.-M. Hartmann, C. Boulet, D. Robert. Collisional effects on molecular spectra: laboratory experiments and models, consequences for applications (Elsevier Science, Amsterdam, 2008)
  2. T. Straume, D. Loftus, J. Li, M. Coleman, C. Davis, K. McMonigal, M. Piccini, A. Singh. Recent Patents Space Technology, 3 (1), 13--23 (2013). DOI: 10.2174/18776116112029990009
  3. Sh.Sh. Nabiev, G.Yu. Grigor'ev, A.S. Lagutin, L.A. Palkina, A.A. Vasil'ev, L.N. Mukhamedieva, A.A. Pakhomova, G.V. Golubkov, S.V. Malashevich, V.M. Semenov, D.B. Stavrovskii, S.V. Ivanov. Russian J. Physical Chemistry B, 13 (4), 685--713 (2019). DOI: 10.1134/S1990793119040122
  4. Sh.Sh. Nabiev, S.V. Ivanov, A.S. Lagutin, L.A. Palkina, S.V. Malashevich, O.A. Ol'khov, M.G. Golubkov. Russian J. Physical Chemistry B, 13 (5), 727--738 (2019). DOI: 10.1134/S1990793119050191
  5. J. Buldyreva, N. Lavrentieva, V. Starikov. Collisional line broadening and shifting of atmospheric gases: A practical guide for line shape modeling by current semiclassical approaches (Imperial College Press, 2011)
  6. R.G. Gordon. J. Chem. Phys., 44 (8), 3083--3089 (1966). DOI: 10.1063/1.1727183
  7. R.G. Gordon. J. Chem. Phys., 45 (5), 1649--1655 (1966). DOI: 10.1063/1.1727808
  8. J. Buldyreva, S.V. Ivanov, L. Nguyen. J. Raman Spectrosc., 36, 148--152 (2005). DOI: 10.1002/jrs.1283
  9. S.V. Ivanov, L. Nguyen, J. Buldyreva. J. Mol. Spectrosc., 233, 60--67 (2005). DOI: 10.1016/j.jms.2005.05.014
  10. L. Nguyen, S.V. Ivanov, O.G. Buzykin, J. Buldyreva. J. Mol. Spectrosc., 239, 101--107 (2006). DOI: 10.1016/j.jms.2006.05.020
  11. S.V. Ivanov, O.G. Buzykin. Mol. Phys., 106, 1291--1302 (2008). DOI: 10.1080/00268970802270034
  12. S.V. Ivanov, O.G. Buzykin. J. Quant. Spectrosc. Radiat. Transf., 111, 2341--2353 (2010). DOI: 10.1016/j.jqsrt.2010.04.031
  13. F. Thibault, S.V. Ivanov, O.G. Buzykin, L. Gomez, M. Dhyne, P. Joubert, M. Lepere. J. Quant. Spectrosc. Radiat. Transf., 112, 1429--1437 (2011). DOI:10.1016/j.jqsrt.2011.02.011
  14. L. Gomez, S.V. Ivanov, O.G. Buzykin, F. Thibault. J. Quant. Spectrosc. Radiat. Transf., 112, 1942--1949 (2011). DOI: 10.1016/j.jqsrt.2011.04.005
  15. F. Thibault, L. Gomez, S.V. Ivanov, O.G. Buzykin, C. Boulet. J. Quant. Spectrosc. Radiat. Transf., 113, 1887--1897 (2012). DOI: 10.1016/j.jqsrt.2012.06.003
  16. C. Povey, M. Guillorel-Obregon, A. Predoi-Cross, S.V. Ivanov, O.G. Buzykin, F. Thibault. Can. J. Phys., 91, 896--905 (2013). DOI: 10.1139/cjp-2013-0031
  17. S.V. Ivanov, O.G. Buzykin. J. Quant. Spectrosc. Radiat. Transf., 119, 84--94 (2013). DOI: 10.1016/j.jqsrt.2012.12.021
  18. F. Thibault, R.Z. Marti nez, D. Bermejo, S.V. Ivanov, O.G. Buzykin, Q. Ma. J. Quant. Spectrosc. Radiat. Transf., 142, 17--24 (2014). DOI: 10.1016/j.jqsrt.2014.03.009
  19. S.V. Ivanov, C. Boulet, O.G. Buzykin, F. Thibault. J. Chem. Phys., 141, 184306-1--184306-10 (2014). DOI: 10.1063/1.4901084
  20. S.V. Ivanov, O.G. Buzykin. J. Quant. Spectrosc. Radiat. Transf., 185, 48--57 (2016). DOI: 10.1016/j.jqsrt.2016.08.017
  21. S.V. Ivanov. J. Quant. Spectrosc. Radiat. Transf., 177, 269--282 (2016). DOI: 10.1016/j.jqsrt.2016.01.034
  22. T.G.A. Heijmen, R. Moszynski, P.E.S. Wormer, A. van der Avoird. J. Chem. Phys., 107 (23), 9921--9928 (1997). DOI: 10.1063/1.475290
  23. M.D. Pattengill. J. Chem. Phys., 66 (11), 5042--5045 (1977). DOI: 10.1063/1.433809
  24. C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs: Prentice-Hall, N.J., 1971)
  25. K.-P. Huber, G. Herzberg. Konstanty dvukhatomnykh molekul (Constants of diatomic molecules). In two parts. P. 1 (Mir, Moscow, 1984)
  26. S. Chapman, S. Green. J. Chem. Phys., 67 (5), 2317--2331 (1977). DOI: 10.1063/1.435067
  27. R.E. Langer. Phys. Rev., 51, 669--676 (1937). DOI: 10.1103/PhysRev.51.669
  28. M.M. Beaky, T.M. Goyette, F.C. De Lucia. J. Chem. Phys., 105 (10), 3994--4004 (1996). DOI: 10.1063/1.472273
  29. R.G. Breene. The shift and shape of spectral lines (Pergamon Press. Oxford, London, New York, 1964)
  30. I.I. Sobelman. Vvedenie v teoriyu atomnykh spektrov (Introduction to the theory of Atomic spectra) (Fizmatlit, Moscow, 1963)
  31. A.A. Vigasin. Bimolecular absorption in molecular gases. In: Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere. Ed. by C. Camy-Peyret and A.A. Vigasin (Springer, Dordrecht, 2003), p. 23--47. DOI: 10.1007/978-94-010-0025-3
  32. D.V. Oparin, N.N. Filippov, I.M. Grigoriev, A.P. Kouzov. J. Quant. Spectrosc. Radiat. Transf., 196, 87--93 (2017). DOI: 10.1016/j.jqsrt.2017.04.002
  33. M. Thachuk, C.E. Chuaqui, R.J. Le Roy. J. Chem. Phys., 105 (10), 4005--4014 (1996). DOI: 10.1063/1.472274
  34. L.D. Thomas, W.P. Kraemer, G.H.F. Diercksen. Chem. Phys., 51, 131--139 (1980). DOI: 10.1016/0301-0104(80)80088-7
  35. C.E. Chuaqui, R.J. Le Roy, A.R.W. McKellar. J. Chem. Phys., 101 (1), 39--61 (1994). DOI: 10.1063/1.468147
  36. R.J. Le Roy, C. Bissonnette, T.H. Wu, A.K. Dham, W.J. Meath. Faraday Discuss. Chem. Soc., 97, 81--94 (1994). DOI: 10.1039/FD9949700081
  37. R. Moszynski, T. Korona, P.E.S. Wormer, A. van der Avoird. J. Chem. Phys., 103 (1), 321--332 (1995). DOI: 10.1063/1.469644

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru