ZnxFe3-xO4 (0 ≤ x≤ 1.0) magnetic nanoparticles functionalized with polyacrylic acid (PAA)
Kamzin A.S.1, Caliskan G.2, Dogan N.2, ab1353@gmail.com3, Semenov V. G4, Buryanenko I. V.5
1Ioffe Institute, St. Petersburg, Russia
2Department of Physics, Gebze Technical University, Kocaeli, Turkey
3Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
4St. Petersburg State University, St. Petersburg, Russia
5Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru, val_sem@mail.ru, iburyanenko@ritverc.com

PDF
Studies of the properties of ZnxFe3-xO4 (x=0, 0.25, 0.5, 0.75, 1.0) magnetic nanoparticles synthesized by a modified hydrothermal method are presented in comparison with the properties of the same nanoparticles stabilized with polyacrylic acid ZnxFe3-xO4@PAA. The structure, size, morphology, and magnetic properties of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), physical properties measurements (PPMS), and Mossbauer spectroscopy. The synthesized nanoparticles are single-phase, without additional impurities, have a narrow size distribution and are in the superparamagnetic phase. From the (XRD) measurements, it was found that with an increase in the Zn content from x=0 to x=1.0, the sizes of the nanoparticles were increasing from 17 to 33 nm. Analysis of the Mossbauer spectroscopy data showed that when doped with Zn ions from x=0 to x=1.0, the sizes of the nanoparticles were decreasing from 15 nm to 5 nm. The results of the Mossbauer studies showed that both ZnxFe3-xO4 and ZnxFe3-xO4@PAA has a core/shell type structure in which the core is magnetically ordered, whereas the shell does not have magnetic ordering. Mossbauer studies indicate that the coating of citric acid particles leads to their isolation from each other, reducing or eliminating interactions between particles, reducing the thickness of the paramagnetic shell, and thereby increasing the diameter of the core, which is in a magnetically ordered state. Keywords: ferrite-spinel nanoparticles, hydrothermal synthesis, polyacrylic acid functionalization, Mossbauer spectroscopy, properties, crystal and magnetic structure.
  1. S.A. Novopashin, M.A. Serebryakova, S.Ya. Khmel. Teplofizika i aeromekhanika, 22, (411), (2015) (in Russian)
  2. Low Viscosity Magnetic Fluid Obtained by the Colloidal Suspension of Magnetic Particles (pat. 3215572A USA. Papell S.S.; Applic. 09.10.1963; Publ. 02.11.1965)
  3. R.E. Rosensweig, R. Kaiser. NTIS Rep. No. NASW-1219; NASA Rep. NASACR-91684. NASA Office of Advanced Research and Technology (Washington, DC, 1967), 238 p
  4. M.A.A. Kerroum, C. Iacovita, W. Baaziz, D. Ihiawakrim, G. Rogez, M. Benaissa, C.M. Lucaciu, O. Ersen. Int. J. Mol. Sci., 21, 7775 (2020). DOI: 10.3390/ijms21207775
  5. J.A. Ramos-Guivar, E.O. Lopez, J.-M. Greneche, F.J. Litterst, E.C. Passamani. Appl. Surf. Sci., 538, 148021 (2021). DOI: 10.1016/j.jmmm.2022.169241
  6. W. Wang, J.V.I. Timonen, A. Carlson, D.-M. Drotlef, C.T. Zhang, S. Kolle, A. Grinthal, T.-S. Wong, B. Hatton, S.H. Kang, S. Kennedy, J. Chi, R.T. Blough, M. Sitti, L. Mahadevan. J. Aizenberg. Nature, 559, 77 (2018). DOI: 10.1038/s41586-018-0250-8
  7. M. Abdolrahimi, M. Vasilakaki, S. Slimani, N. Ntallis, G. Varvaro, S. Laureti, C. Meneghini, K.N. Trohidou, D. Fiorani, D. Peddis. Nanomaterials, 11, 1787 (2021). DOI: 10.3390/nano11071787
  8. E.M. Materon, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani, C.J. Dalmaschio, F. Davis, F.M. Shimizu. Appl. Surf. Sci. Adv., 6, 100163 (2021). DOI: 10.3390/bios12080554
  9. M.G.M. Schneider, M.J. Marti n, J. Otarola, E. Vakarelska, V. Simeonov, V. Lassalle, M. Nedyalkova. Pharmaceutics, 14, 204 (2022). DOI: 10.3390/pharmaceutics14010204
  10. I.M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, C.V.V.M. Gopi. Magnetochemistry, 5, 67 (2019). DOI: 10.3390/magnetochemistry5040067
  11. J. Majeed, L. Pradhan, R.S. Ningthoujam, R.K. Vatsa, D. Bahadur, A.K. Tyagi. Colloids Surf. B, 122, 396 (2014). DOI: 10.1016/j.colsurfb.2014.07.019
  12. M. Nedyalkova, B. Donkova, J. Romanova, G. Tzvetkov, S. Madurga, V. Simeonov. Adv. Colloid Interface Sci., 249, 192 (2017). DOI: 10.1016/j.cis.2017.05.003
  13. Size Effects in Nanostructures: Basics and Applications, ed. by V. Kuncser, L. Miu (Springer-Verlag, Berlin-Heidelberg, 2014)
  14. V. v Sepelak. Ann. Chim. Sci. Mat., 27, 61 (2002). DOI: 10.1016/S0151-9107(02)90015-2
  15. J. Bennet, R. Tholkappiyan, K. Vishista, N.V. Jaya, F. Hamed. Appl. Surf. Sci., 383, 113 (2016). DOI: 10.1016/j.apsusc.2016.04.177
  16. T. Vigneswari, P. Rajib. J. Mol. Struct., 424, 267 (2017). DOI: 10.1016/j.molstruc.2016.07.116
  17. F. Ozel, O. Karaagac, E. Tokay, F. Kockar, H. Kockar. J. Magn. Magn. Mater., 474, 654 (2019). DOI: 10.1016/j.jmmm.2018.11.025
  18. H. Mahajan, S.K. Godara, A.K. Srivastava. J. Alloys Compd., 896, 162966 (2021). DOI: 10.1016/j.jallcom.2021.162966
  19. E.A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran. Appl. Phys. Rev., 2, 041302 (2015). DOI: 10.1063/1.4935688
  20. Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application. A volume in Metal Oxides, ed. by M. Mahmoudi, S. Laurent (Elsevier, 2018)
  21. P.D. Shima, J. Philip, B. Raj. J. Phys. Chem. C, 114, 18825 (2010). DOI: 10.1021/jp107447q
  22. V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience (Editura Academiei Romane, Bucharest, 2013), v. 197
  23. M.A. Daniele, M.L. Shaughnessy, R. Roeder, A. Childress, Y.P. Bandera, S. Foulger. ACS Nano, 7, 203 (2012). DOI: 10.1021/nn3037368
  24. C. Liu, P. Huang. Soil Sci. Soc. Am. J., 63, 65 (1999). DOI: 10.2136/sssaj1999.03615995006300010011x
  25. A. Jedlovszky-Hajd, F.B. Bombelli, M.P. Monopoli, E. Tombacz, K.A. Dawson. Langmuir, 28, 14983 (2012). DOI: 10.1021/la302446h
  26. M. Nandy, B.B. Lahiri, C.H. Yadhukrishna, J. Philip. J. Mol. Liq., 336, 116332 (2021). DOI: 10.1016/j.molliq.2021.116332
  27. T.J. Daou, G. Pourroy, S. Begin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P. Legar, P. Bernhardt, C. Leuvrey, G. Rogez. Chem. Mater., 18, 4399 (2006). DOI: 10.1021/cm060805r
  28. S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen. J. Magn. Magn. Mater., 308, 210 (2007). DOI: 10.1016/j.jmmm.2006.05.017
  29. V.G. Semenov, V.V. Panchuk. Private message
  30. K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. (Wiley, N. Y., 2009), p. 424
  31. X. Wu, Z. Ding, W. Wang, N. Song, S. Khaimanov, N. Tsidaeva. Powder Technol., 295, 59 (2016). DOI: 10.1016/j.powtec.2016.03.033
  32. K. Raja, S. Verma, S. Karmakar, S. Kar, S.J. Das, K.S. Bartwal. Cryst. Res. Technol., 46, 497 (2011). DOI: 10.1002/crat.201100105
  33. B.D. Cullity. Elements of X-ray Diffraction (Addison Wesley Publishing Company, USA, 1978)
  34. Y. Tan, Z. Zhuang, Q. Peng, Y. Li. Chem. Mater., 20, 5029 (2008). DOI: 10.1021/cm801082p
  35. M. Abareshi, E.K. Goharshadi, S. Mojtaba Zebarjad, H. Khandan Fadafan, A. Youssefi. J. Magn. Magn. Mater., 322, 3895 (2010). DOI: 10.1016/j.jmmm.2010.08.016
  36. J. Liu, Y. Bin, M. Matsuo. J. Phys. Chem. C, 116, 134 (2012). DOI: 10.1021/jp207354s
  37. K. Praveena, K. Sadhana, H.S. Virk. Solid State Phenom., 232, 45 (2015). DOI: 10.4028/www.scientific.net/SSP.232.45
  38. M. Srivastava, S.K. Alla, S.S. Meena, N. Gupta, R.K. Mandal, N.K. Prasad. New J. Chem., 42, 07144 (2018). DOI: 10.1039/C8NJ00547H
  39. M. Abbas, B.P. Rao, S.M. Naga, M. Takahashi, C. Kim. Ceram. Int., 39, 7605 (2013). DOI: 10.1016/j.ceramint.2013.03.01
  40. M.S. Angotzi, A. Musinu, V. Mameli, A. Ardu, C. Cara, D. Niznansky, H.L. Xin, C. Cannas. ACS Nano, 11, 7889 (2017). DOI: 10.1021/acsnano.7b02349
  41. Mossbauer Spectroscopy Applied to Magnetism and Materials Science, ed. by G.J. Long, F. Grandjean (Springer Science+Business Media, NY., 1993), v. 1, 479 p
  42. B. Fultz. Mossbauer Spectrometry. Characterization of Materials (John Wiley \& Sons, Inc., Hoboken, N. J., 2011)
  43. E. Umut, M. Co skun, H. Gungune s, V. Dupuis, A.S. Kamzin. J. Supercond. Nov. Magn., 34, 913 (2021). DOI: 10.1007/s10948-020-05800-y
  44. A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. FTT, 62, 1715 (2020) (in Russian). DOI: 10.21883/FTT.2020.10.49928.056
  45. A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. FTT, 62, 1919 (2020) (in Russian). DOI: 10.21883/FTT.2020.11.50071.062
  46. Magnetic Properties of Fine Particles, ed. by J.L. Dormann, D. Fiorani (Elsevier, 2012), 430 p
  47. E.C. Stoner, E. Wohlfarth. Phil. Tr. Roy. Soc. Lond. Ser. A, 240, 599 (1948). DOI: 10.1098/rsta.1948.0007
  48. A.S. Kamzin, I.M. Obaidat, V.S. Kozlov, E.V. Voronina, V. Narayanaswamy, I.A. Al-Omari. FTT, 63, 807 (2021) (in Russian). DOI: 10.21883/FTT.2021.06.50944.004
  49. A.S. Kamzin, I.M. Obaidat, V.S. Kozlov, E.V. Voronina, V. Narayanaswamy, I.A. Al-Omari. FTT, 63, 900 (2021) (in Russian). DOI: 10.21883/FTT.2021.07.51040.039
  50. R. Gabbasov, M. Polikarpov, V. Cherepanov, M. Chuev, I. Mischenko, A. Lomov, A. Wang, V. Panchenko. J. Magn. Magn. Mater., 380, 111 (2015). DOI: 10.1016/j.jmmm.2014.11.032
  51. M.A. Chuev. Pisma v ZhETF, 98, 523 (2013). (in Russian) [M.A. Chuev, JETP Lett., 98, 465 (2013). DOI: 10.7868/S0370274X1320006X]
  52. J.M. Byrne, V.S. Coker, E. Cespedes, P.L. Wincott, D.J. Vaughan, R.A.D. Pattrick, G. van der Laan, E. Arenholz, F. Tuna, M. Bencsik, J.R. Lloyd, N.D. Telling. Adv. Funct. Mater., 24, 2518 (2014). DOI: 10.1002/adfm.201303230
  53. P.M. Zelis, G.A. Pasquevich, S.J. Stewart, M.B.F. Van Raap, J. Aphesteguy, I.J. Bruvera, C. Laborde, B. Pianciola, S. Jacobo, F.H. Sanchez. J. Phys. D. Appl. Phys., 46, 125006 (2013). DOI: 10.1088/0022-3727/46/12/125006
  54. S.W. da Silva, F. Nakagomi, M.S. Silva, A. Franco Jr., V.K. Garg, A.C. Oliveira, P.C. Morais. J. Nanopart. Res., 14, 798 (2012). DOI: 10.1007/s11051-012-0798-4
  55. S.B. Singh, Ch. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, P. Bhatt, S.M. Yusuf, D.L. Sastry. Ceram. Intern., 42, 19188 (2016). DOI: 10.1016/j.ceramint.2016.09.081
  56. A.G. Roca, J.F. Marco, M. del P. Morales, C.J. Serna. J. Phys. Chem. C, 111, 18577 (2007). DOI: 10.1021/jp075133m
  57. E.S. Vasil'eva, O.V. Tolochko, V.G. Semenov, V.S. Volodin, D. Kim. Tech. Phys. Lett., 33, 40 (2007). DOI: 10.1134/S1063785007010117
  58. C.E. Johnson, J.A. Johnson, H.Y. Hah, M. Cole, S. Gray, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. Hyperfine Interact., 237, 27 (2016). DOI: 10.1007/s10751-016-1277-6
  59. E.R. Bauminger, S.G. Cohen, A. Marinov, S. Ofer, E. Segal. Phys. Rev., 122, 1447 (1961). DOI: 10.1103/PhysRev.122.1447
  60. M.A. Chuev. Dokl. Phys., 56, 318 (2011). DOI: 10.1134/S1028335811060097
  61. M.A. Chuev. J. Phys. Cond. Matter. 20, 505201 (2008). DOI: 10.1088/0953-8984/20/50/505201
  62. M.A. Chuev, JETP, 114, 609 (2012). DOI: 10.1134/S1063776112020185
  63. G.A. Sawatzky, C. Boekema, F. van der Woude. Proc. Int. Conf. on the Appl. of the Mossbauer Effect (Dresden, Germany, 1971), p. 238
  64. F. van der Woude, G.A. Sawatzky. Phys. Rev. B, 4, 3159 (1971). DOI: 10.1103/PhysRevB.4.3159
  65. I.N. Zakharova, M.A. Shipilin, V.P. Alekseev, A.M. Shipilin. Tech. Phys. Lett., 38, 55 (2012)
  66. S. Morup, J.A. Dumesic, H. Topsee. In: Applications of Mossbauer Spectroscopy, ed. by R.L. Cohen (Academic Press, N. Y., 1980), v. II, p. 1
  67. S. M rup, E. Brok, C. Frandsen. J. Nanomater., 720629 (2013). DOI: 10.1155/2013/720629
  68. A.S. Kamzin. J. Experim. Theoret. Phys. 89, 890 (1999)
  69. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.-M. Greneche. J. Phys. Cond. Matter., 12, 7795 (2000). DOI: 10.1088/0953-8984/12/35/314
  70. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. FTT, 64, 712 (2022) (in Russian). DOI: 10.21883/FTT.2022.06.52406.298
  71. G.A. Sawatzky, F. Van der Woude, A.H. Morrish. J. Appl. Phys., 39, 1204 (1968). DOI: 10.1063/1.1656224
  72. G.A. Sawatzky, F. Van der Woude, A.H. Morrish. Phys. Rev., 187, 747 (1969). DOI: 10.1103/PhysRev.187.747
  73. E. Lima, A.L. Brandl, A.D. Arelaro, G.F. Goya. J. Appl. Phys., 99, 083908 (2006). DOI: 10.1063/1.2191471
  74. J.M.D. Coey. Phys. Rev. Lett., 27, 1140 (1971). DOI: 10.1103/PhysRevLett.27.1140
  75. S. Ferrari, J.C. Aphesteguy, F.D. Saccone. IEEE Tr. MAG, 51, 2900206 (2015). DOI: 10.1109/TMAG.2014.2377132
  76. P. Masina, T. Moyo, H.M.I. Abdallah. J. Magn. Magn. Mater., 381, 41 (2015). DOI: 10.1016/j.jmmm.2014.12.053

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru