Kamzin A.S.1, Caliskan G.2, Dogan N.2, ab1353@gmail.com3, Semenov V. G4, Buryanenko I. V.5
1Ioffe Institute, St. Petersburg, Russia
2Department of Physics, Gebze Technical University, Kocaeli, Turkey
3Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
4St. Petersburg State University, St. Petersburg, Russia
5Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru, val_sem@mail.ru, iburyanenko@ritverc.com
Studies of the properties of ZnxFe3-xO4 (x=0, 0.25, 0.5, 0.75, 1.0) magnetic nanoparticles synthesized by a modified hydrothermal method are presented in comparison with the properties of the same nanoparticles stabilized with polyacrylic acid ZnxFe3-xO4@PAA. The structure, size, morphology, and magnetic properties of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), physical properties measurements (PPMS), and Mossbauer spectroscopy. The synthesized nanoparticles are single-phase, without additional impurities, have a narrow size distribution and are in the superparamagnetic phase. From the (XRD) measurements, it was found that with an increase in the Zn content from x=0 to x=1.0, the sizes of the nanoparticles were increasing from 17 to 33 nm. Analysis of the Mossbauer spectroscopy data showed that when doped with Zn ions from x=0 to x=1.0, the sizes of the nanoparticles were decreasing from 15 nm to 5 nm. The results of the Mossbauer studies showed that both ZnxFe3-xO4 and ZnxFe3-xO4@PAA has a core/shell type structure in which the core is magnetically ordered, whereas the shell does not have magnetic ordering. Mossbauer studies indicate that the coating of citric acid particles leads to their isolation from each other, reducing or eliminating interactions between particles, reducing the thickness of the paramagnetic shell, and thereby increasing the diameter of the core, which is in a magnetically ordered state. Keywords: ferrite-spinel nanoparticles, hydrothermal synthesis, polyacrylic acid functionalization, Mossbauer spectroscopy, properties, crystal and magnetic structure.
- S.A. Novopashin, M.A. Serebryakova, S.Ya. Khmel. Teplofizika i aeromekhanika, 22, (411), (2015) (in Russian)
- Low Viscosity Magnetic Fluid Obtained by the Colloidal Suspension of Magnetic Particles (pat. 3215572A USA. Papell S.S.; Applic. 09.10.1963; Publ. 02.11.1965)
- R.E. Rosensweig, R. Kaiser. NTIS Rep. No. NASW-1219; NASA Rep. NASACR-91684. NASA Office of Advanced Research and Technology (Washington, DC, 1967), 238 p
- M.A.A. Kerroum, C. Iacovita, W. Baaziz, D. Ihiawakrim, G. Rogez, M. Benaissa, C.M. Lucaciu, O. Ersen. Int. J. Mol. Sci., 21, 7775 (2020). DOI: 10.3390/ijms21207775
- J.A. Ramos-Guivar, E.O. Lopez, J.-M. Greneche, F.J. Litterst, E.C. Passamani. Appl. Surf. Sci., 538, 148021 (2021). DOI: 10.1016/j.jmmm.2022.169241
- W. Wang, J.V.I. Timonen, A. Carlson, D.-M. Drotlef, C.T. Zhang, S. Kolle, A. Grinthal, T.-S. Wong, B. Hatton, S.H. Kang, S. Kennedy, J. Chi, R.T. Blough, M. Sitti, L. Mahadevan. J. Aizenberg. Nature, 559, 77 (2018). DOI: 10.1038/s41586-018-0250-8
- M. Abdolrahimi, M. Vasilakaki, S. Slimani, N. Ntallis, G. Varvaro, S. Laureti, C. Meneghini, K.N. Trohidou, D. Fiorani, D. Peddis. Nanomaterials, 11, 1787 (2021). DOI: 10.3390/nano11071787
- E.M. Materon, C.M. Miyazaki, O. Carr, N. Joshi, P.H.S. Picciani, C.J. Dalmaschio, F. Davis, F.M. Shimizu. Appl. Surf. Sci. Adv., 6, 100163 (2021). DOI: 10.3390/bios12080554
- M.G.M. Schneider, M.J. Marti n, J. Otarola, E. Vakarelska, V. Simeonov, V. Lassalle, M. Nedyalkova. Pharmaceutics, 14, 204 (2022). DOI: 10.3390/pharmaceutics14010204
- I.M. Obaidat, V. Narayanaswamy, S. Alaabed, S. Sambasivam, C.V.V.M. Gopi. Magnetochemistry, 5, 67 (2019). DOI: 10.3390/magnetochemistry5040067
- J. Majeed, L. Pradhan, R.S. Ningthoujam, R.K. Vatsa, D. Bahadur, A.K. Tyagi. Colloids Surf. B, 122, 396 (2014). DOI: 10.1016/j.colsurfb.2014.07.019
- M. Nedyalkova, B. Donkova, J. Romanova, G. Tzvetkov, S. Madurga, V. Simeonov. Adv. Colloid Interface Sci., 249, 192 (2017). DOI: 10.1016/j.cis.2017.05.003
- Size Effects in Nanostructures: Basics and Applications, ed. by V. Kuncser, L. Miu (Springer-Verlag, Berlin-Heidelberg, 2014)
- V. v Sepelak. Ann. Chim. Sci. Mat., 27, 61 (2002). DOI: 10.1016/S0151-9107(02)90015-2
- J. Bennet, R. Tholkappiyan, K. Vishista, N.V. Jaya, F. Hamed. Appl. Surf. Sci., 383, 113 (2016). DOI: 10.1016/j.apsusc.2016.04.177
- T. Vigneswari, P. Rajib. J. Mol. Struct., 424, 267 (2017). DOI: 10.1016/j.molstruc.2016.07.116
- F. Ozel, O. Karaagac, E. Tokay, F. Kockar, H. Kockar. J. Magn. Magn. Mater., 474, 654 (2019). DOI: 10.1016/j.jmmm.2018.11.025
- H. Mahajan, S.K. Godara, A.K. Srivastava. J. Alloys Compd., 896, 162966 (2021). DOI: 10.1016/j.jallcom.2021.162966
- E.A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran. Appl. Phys. Rev., 2, 041302 (2015). DOI: 10.1063/1.4935688
- Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application. A volume in Metal Oxides, ed. by M. Mahmoudi, S. Laurent (Elsevier, 2018)
- P.D. Shima, J. Philip, B. Raj. J. Phys. Chem. C, 114, 18825 (2010). DOI: 10.1021/jp107447q
- V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience (Editura Academiei Romane, Bucharest, 2013), v. 197
- M.A. Daniele, M.L. Shaughnessy, R. Roeder, A. Childress, Y.P. Bandera, S. Foulger. ACS Nano, 7, 203 (2012). DOI: 10.1021/nn3037368
- C. Liu, P. Huang. Soil Sci. Soc. Am. J., 63, 65 (1999). DOI: 10.2136/sssaj1999.03615995006300010011x
- A. Jedlovszky-Hajd, F.B. Bombelli, M.P. Monopoli, E. Tombacz, K.A. Dawson. Langmuir, 28, 14983 (2012). DOI: 10.1021/la302446h
- M. Nandy, B.B. Lahiri, C.H. Yadhukrishna, J. Philip. J. Mol. Liq., 336, 116332 (2021). DOI: 10.1016/j.molliq.2021.116332
- T.J. Daou, G. Pourroy, S. Begin-Colin, J.M. Greneche, C. Ulhaq-Bouillet, P. Legar, P. Bernhardt, C. Leuvrey, G. Rogez. Chem. Mater., 18, 4399 (2006). DOI: 10.1021/cm060805r
- S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen. J. Magn. Magn. Mater., 308, 210 (2007). DOI: 10.1016/j.jmmm.2006.05.017
- V.G. Semenov, V.V. Panchuk. Private message
- K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part B. (Wiley, N. Y., 2009), p. 424
- X. Wu, Z. Ding, W. Wang, N. Song, S. Khaimanov, N. Tsidaeva. Powder Technol., 295, 59 (2016). DOI: 10.1016/j.powtec.2016.03.033
- K. Raja, S. Verma, S. Karmakar, S. Kar, S.J. Das, K.S. Bartwal. Cryst. Res. Technol., 46, 497 (2011). DOI: 10.1002/crat.201100105
- B.D. Cullity. Elements of X-ray Diffraction (Addison Wesley Publishing Company, USA, 1978)
- Y. Tan, Z. Zhuang, Q. Peng, Y. Li. Chem. Mater., 20, 5029 (2008). DOI: 10.1021/cm801082p
- M. Abareshi, E.K. Goharshadi, S. Mojtaba Zebarjad, H. Khandan Fadafan, A. Youssefi. J. Magn. Magn. Mater., 322, 3895 (2010). DOI: 10.1016/j.jmmm.2010.08.016
- J. Liu, Y. Bin, M. Matsuo. J. Phys. Chem. C, 116, 134 (2012). DOI: 10.1021/jp207354s
- K. Praveena, K. Sadhana, H.S. Virk. Solid State Phenom., 232, 45 (2015). DOI: 10.4028/www.scientific.net/SSP.232.45
- M. Srivastava, S.K. Alla, S.S. Meena, N. Gupta, R.K. Mandal, N.K. Prasad. New J. Chem., 42, 07144 (2018). DOI: 10.1039/C8NJ00547H
- M. Abbas, B.P. Rao, S.M. Naga, M. Takahashi, C. Kim. Ceram. Int., 39, 7605 (2013). DOI: 10.1016/j.ceramint.2013.03.01
- M.S. Angotzi, A. Musinu, V. Mameli, A. Ardu, C. Cara, D. Niznansky, H.L. Xin, C. Cannas. ACS Nano, 11, 7889 (2017). DOI: 10.1021/acsnano.7b02349
- Mossbauer Spectroscopy Applied to Magnetism and Materials Science, ed. by G.J. Long, F. Grandjean (Springer Science+Business Media, NY., 1993), v. 1, 479 p
- B. Fultz. Mossbauer Spectrometry. Characterization of Materials (John Wiley \& Sons, Inc., Hoboken, N. J., 2011)
- E. Umut, M. Co skun, H. Gungune s, V. Dupuis, A.S. Kamzin. J. Supercond. Nov. Magn., 34, 913 (2021). DOI: 10.1007/s10948-020-05800-y
- A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. FTT, 62, 1715 (2020) (in Russian). DOI: 10.21883/FTT.2020.10.49928.056
- A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. FTT, 62, 1919 (2020) (in Russian). DOI: 10.21883/FTT.2020.11.50071.062
- Magnetic Properties of Fine Particles, ed. by J.L. Dormann, D. Fiorani (Elsevier, 2012), 430 p
- E.C. Stoner, E. Wohlfarth. Phil. Tr. Roy. Soc. Lond. Ser. A, 240, 599 (1948). DOI: 10.1098/rsta.1948.0007
- A.S. Kamzin, I.M. Obaidat, V.S. Kozlov, E.V. Voronina, V. Narayanaswamy, I.A. Al-Omari. FTT, 63, 807 (2021) (in Russian). DOI: 10.21883/FTT.2021.06.50944.004
- A.S. Kamzin, I.M. Obaidat, V.S. Kozlov, E.V. Voronina, V. Narayanaswamy, I.A. Al-Omari. FTT, 63, 900 (2021) (in Russian). DOI: 10.21883/FTT.2021.07.51040.039
- R. Gabbasov, M. Polikarpov, V. Cherepanov, M. Chuev, I. Mischenko, A. Lomov, A. Wang, V. Panchenko. J. Magn. Magn. Mater., 380, 111 (2015). DOI: 10.1016/j.jmmm.2014.11.032
- M.A. Chuev. Pisma v ZhETF, 98, 523 (2013). (in Russian) [M.A. Chuev, JETP Lett., 98, 465 (2013). DOI: 10.7868/S0370274X1320006X]
- J.M. Byrne, V.S. Coker, E. Cespedes, P.L. Wincott, D.J. Vaughan, R.A.D. Pattrick, G. van der Laan, E. Arenholz, F. Tuna, M. Bencsik, J.R. Lloyd, N.D. Telling. Adv. Funct. Mater., 24, 2518 (2014). DOI: 10.1002/adfm.201303230
- P.M. Zelis, G.A. Pasquevich, S.J. Stewart, M.B.F. Van Raap, J. Aphesteguy, I.J. Bruvera, C. Laborde, B. Pianciola, S. Jacobo, F.H. Sanchez. J. Phys. D. Appl. Phys., 46, 125006 (2013). DOI: 10.1088/0022-3727/46/12/125006
- S.W. da Silva, F. Nakagomi, M.S. Silva, A. Franco Jr., V.K. Garg, A.C. Oliveira, P.C. Morais. J. Nanopart. Res., 14, 798 (2012). DOI: 10.1007/s11051-012-0798-4
- S.B. Singh, Ch. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, P. Bhatt, S.M. Yusuf, D.L. Sastry. Ceram. Intern., 42, 19188 (2016). DOI: 10.1016/j.ceramint.2016.09.081
- A.G. Roca, J.F. Marco, M. del P. Morales, C.J. Serna. J. Phys. Chem. C, 111, 18577 (2007). DOI: 10.1021/jp075133m
- E.S. Vasil'eva, O.V. Tolochko, V.G. Semenov, V.S. Volodin, D. Kim. Tech. Phys. Lett., 33, 40 (2007). DOI: 10.1134/S1063785007010117
- C.E. Johnson, J.A. Johnson, H.Y. Hah, M. Cole, S. Gray, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. Hyperfine Interact., 237, 27 (2016). DOI: 10.1007/s10751-016-1277-6
- E.R. Bauminger, S.G. Cohen, A. Marinov, S. Ofer, E. Segal. Phys. Rev., 122, 1447 (1961). DOI: 10.1103/PhysRev.122.1447
- M.A. Chuev. Dokl. Phys., 56, 318 (2011). DOI: 10.1134/S1028335811060097
- M.A. Chuev. J. Phys. Cond. Matter. 20, 505201 (2008). DOI: 10.1088/0953-8984/20/50/505201
- M.A. Chuev, JETP, 114, 609 (2012). DOI: 10.1134/S1063776112020185
- G.A. Sawatzky, C. Boekema, F. van der Woude. Proc. Int. Conf. on the Appl. of the Mossbauer Effect (Dresden, Germany, 1971), p. 238
- F. van der Woude, G.A. Sawatzky. Phys. Rev. B, 4, 3159 (1971). DOI: 10.1103/PhysRevB.4.3159
- I.N. Zakharova, M.A. Shipilin, V.P. Alekseev, A.M. Shipilin. Tech. Phys. Lett., 38, 55 (2012)
- S. Morup, J.A. Dumesic, H. Topsee. In: Applications of Mossbauer Spectroscopy, ed. by R.L. Cohen (Academic Press, N. Y., 1980), v. II, p. 1
- S. M rup, E. Brok, C. Frandsen. J. Nanomater., 720629 (2013). DOI: 10.1155/2013/720629
- A.S. Kamzin. J. Experim. Theoret. Phys. 89, 890 (1999)
- C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.-M. Greneche. J. Phys. Cond. Matter., 12, 7795 (2000). DOI: 10.1088/0953-8984/12/35/314
- A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. FTT, 64, 712 (2022) (in Russian). DOI: 10.21883/FTT.2022.06.52406.298
- G.A. Sawatzky, F. Van der Woude, A.H. Morrish. J. Appl. Phys., 39, 1204 (1968). DOI: 10.1063/1.1656224
- G.A. Sawatzky, F. Van der Woude, A.H. Morrish. Phys. Rev., 187, 747 (1969). DOI: 10.1103/PhysRev.187.747
- E. Lima, A.L. Brandl, A.D. Arelaro, G.F. Goya. J. Appl. Phys., 99, 083908 (2006). DOI: 10.1063/1.2191471
- J.M.D. Coey. Phys. Rev. Lett., 27, 1140 (1971). DOI: 10.1103/PhysRevLett.27.1140
- S. Ferrari, J.C. Aphesteguy, F.D. Saccone. IEEE Tr. MAG, 51, 2900206 (2015). DOI: 10.1109/TMAG.2014.2377132
- P. Masina, T. Moyo, H.M.I. Abdallah. J. Magn. Magn. Mater., 381, 41 (2015). DOI: 10.1016/j.jmmm.2014.12.053
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.