Residual stresses at the interface between carrier tape and YSZ layer in manufacture of 2G HTS wires
Irodova A. V.1, Golovkova E. A.1, Kondratiev O. A.1, Kruglov V. S.1, Krylov V. E.1, Tikhomirov S. A.1, Shavkin S. V.1
1National Research Center “Kurchatov Institute”, Moscow, Russia
Email: Irodova_AV@nrcki.ru

PDF
Using X-ray diffraction, there were determined the residual stresses on the surface of the AISI 310S stainless steel carrier tape used in manufacture of the second generation high temperature superconducting (2G HTS) wires at the National Research Center "Kurchatov Institute", from delivery to deposition of the main buffer layer YSZ between the tape and the superconducting layer, and the residual stress in the buffer layer YSZ itself. The compressive stress of -0.8 GPa induced by rolling was found on the surface of the tape as-delivered. During processing, it varies from -0.5 to -1.1 GPa. At each stage, its depth distribution was found down to 10 μm, and the residual stresses caused by processing were determined. The residual stress in the YSZ layer deposited using the ABAD technology is compressive and amounts to -3.29 GPa. The layer has a defective single-crystal structure in type to radiation swelling with the unstressed lattice period of 5.1820 Angstrem, 0.9% larger than in ordinary crystal. The results obtained are in agreement with the data of the earlier neutron diffraction study of residual stresses inside the carrier tape. Keywords: residual stress, 2G HTS wires, AISI 310S tape, YSZ layer, YSZ crystal structure, X-ray diffraction.
  1. J.L. MacManus-Driscoll, S.C. Wimbush. Nat. Rev. Mater., 6, 587 (2021). DOI: 10.1038/s41578-021-00290-3
  2. K. Osamura, M. Sugano, S. Machiya, H. Adachi, M. Sato, S. Ochiai, A. Otto. Supercond. Sci. Technol., 20, S211 (2007). DOI: 10.1088/0953-2048/20/9/S15
  3. K. Osamura, M. Sugano, S. Machiya, H. Adachi, S. Ochiai, M. Sato. Supercond. Sci. Technol., 22, 065001 (2009). DOI: 10.1088/0953-2048/22/6/065001
  4. A. Krivykh, A. Irodova, V. Krylov, I. Kulikov, A. Polyakov. IEEE Trans. Appl. Supercond., 32 (4), 8400105 (2022). DOI: 10.1109/TASC.2022.3143773
  5. I.D. Karpov, A.V. Irodova, V.S. Kruglov, S.V. Shavkin, V.T. Em. Tech. Phys., 65 (7), 1051 (2020). DOI: 10.1134/S1063784220070063
  6. A.V. Irodova, I.D. Karpov, V.S. Kruglov, V.E. Krylov, S.V. Shavkin, V.T. Em. ZhTF, 91 (12), 1966 (2021) (in Russian). DOI: 10.21883/JTF.2021.12.51761.169-21
  7. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeijer. J. Appl. Crystallogr., 38, 1 (2005). DOI: 10.1107/S0021889804029516
  8. J. Xiong, W. Qin, X. Cui, B. Tao, J. Tang, Y. Li. Physica C Supercond., 455, 52 (2007). DOI: 10.1016/J.PHYSC.2007.02.006
  9. F. Li, S. Wang, Z. Zhang, S. Muhammad, X. Le, Z. Xiao, X. Ouyang. Physica C Supercond., 564, 68 (2019). DOI: 10.1016/J.PHYSC.2019.06.008
  10. J. Yu, F. Li, J.-B. Fan, S. Muhammad, Y.P. Dahal, Z. Zhang, S. Wang. Physica C Supercond., 577, 1353728 (2020). DOI: 10.1016/j.physc.2020.1353728
  11. S. Favre, D. Ariosa, C. Yelpo, M. Mazini, R. Faccio. Mater. Chem. Phys., 266, 124507 (2021). DOI: 10.1016/j.matchemphys.2021.124507
  12. J.H. Cheon, P.S. Shankar, J.P. Singh. Supercond. Sci. Technol., 18, 142 (2005). DOI: 10.1088/0953-2048/18/1/022
  13. Resursny tsentr laboratornykh rentgenovskikh metodov "Rentgen" (in Russian) URL: http://www.rc.nrcki.ru/pages/main/rentgen/index.shtml
  14. A. Usoskin, L. Kirchhoff. Mater. Res. Soc. Symp. Proc., 1150, 1150-RR05-02 (2009). DOI: 10.1557/PROC-1150-RR05-02
  15. K.J. Radcliff, R.P. Walsh, D.C. Larbalestier, S. Hahn. IOP Conf. Series: Materials Science and Engineering, 756, 012023 (2020). DOI: 10.1088/1757-899X/756/1/012023
  16. International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables (Kluwer Academic Publishers, Dordrecht, 2004), DOI: 10.1107/97809553602060000103
  17. R.P. Ingel, D. Lewis. J. Am. Ceram. Soc., 69 (4), 325 (1986). DOI: 10.1111/j.1151-2916.1986.tb04741.x
  18. T. Mitsunaga. The Rigaku J., 25 (1), 7 (2009)
  19. L.B. Freund, S. Suresh. Thin Film Materials. Stress, Defect Formation and Surface Evolution (Cambridge University Press, NY., 2004), DOI: 10.1017/CBO9780511754715.003
  20. AISI 310S (S31008) Stainless Steel. URL: https://www.makeitfrom.com/material-properties/AISI-310S-S31008-Stainless-Steel
  21. International Tables for Crystallography, Volume D: Physical properties of crystals (Kluwer Academic Publishers, Dordrecht, 2003), DOI: 10.1107/97809553602060000113
  22. G. Simmons, H.F. Wang. Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook (MIT Press, Cambridge, 1971)
  23. R. Hill. Proceed. Phys. Society, Section A, 65 (5), 349 (1952). DOI: 10.1088/0370-1298/65/5/307
  24. R.P. Ingel, D. Lewis. J. Am. Ceram. Soc., 71 (4), 265 (1988). DOI: 10.1111/J.1151-2916.1988.TB05858.X
  25. N.G. Pace, G.A. Saunders, Z. Sumengen, J.S. Thorp. J. Mater. Sci., 4, 1106 (1969). DOI: 10.1007/BF00549851
  26. J.M. Farley, J.S. Thorp, J.S. Ross, G.A. Saunders. J. Mater. Sci., 7, 475 (1972). DOI: 10.1007/BF00553773
  27. I.L. Chistyi, I.L. Fabelinskii, V.F. Kitaeva, V.V. Osiko, Y.V. Pisarevskii, I.M. Sil'vestrova. J. Raman Spectrosc., 6 (4), 183 (1977). DOI: 10.1002/jrs.1250060406
  28. M. Hayakawa, H. Miyauchi, A. Ikegami, M. Nishida. Mater. Trans. JIM, 39 (2), 268 (1998). DOI: 10.2320/MATERTRANS1989.39.268
  29. H.M. Kandil, J. Greiner, J. Smith. J. Am. Ceram. Soc., 67 (5), 341 (1984). DOI: 10.1111/J.1151-2916.1984.TB19534.X
  30. A. Selcuk, A. Atkinson. J. Eur. Ceram. Soc., 17 (12), 1523 (1997). DOI: 10.1016/S0955-2219(96)00247-6
  31. R. Kuzel, R. Cerny, V. Valvoda, M. Blomberg, M. Merisalo. Thin Solid Films, 247 (1), 64 (1994). DOI: 10.1016/0040-6090(94)90477-4
  32. B.H. Hwang, S.Y. Chiou. Thin Solid Films, 304 (1--2), 286 (1997). DOI: 10.1016/S0040-6090(97)00106-5
  33. L. Meda, K.H. Dahmen, S. Hayek, H. Garmestani. J. Cryst. Growth, 263, 185 (2004). DOI:10.1016/j.jcrysgro.2003.10.055
  34. FullProf Suite. Crystallographic tools for Rietveld, profile matching \& integrated intensity refinements of X-Ray and/or neutron data. [Electronic resource] URL: https://www.ill.eu/sites/fullprof/index.html
  35. P.J. Withers, H.K.D.H. Bhadeshia. J. Mater. Sci. Technol., 17, 355 (2001). DOI: 10.1179/026708301101509980

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru