Effect of the thickness on electrical resistance of thin diamond-like carbon coatings on silicon substrate
Zur I. A. 1,2, Shmanay Y. E.1,3, Fedotova J. A.1, Kharchanka A. A.1, Movchan S. A.4
1Institute for Nuclear Problems, Belarusian State University, Minsk, Belarus
2Department of Energy Physics, Belarusian State University, Minsk, Belarus
3Academic department of Micro- and Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
4Joint Institute for Nuclear Research, Dubna, Russia
Email: zur.ilya01@gmail.com, ouik9970@gmail.com, julia@hep.by, xaatm@mail.ru, movchansa@yandex.com

The relationship between sp2/sp3-hybridizations ratio of atomic bonds in diamond-like carbon ( DLC - Diamond-Like Carbon) and its electrical resistivity for coatings with a thickness in the range 22-70 nm prepared by vacuum arc deposition on silicon substrate of the KDB-8 brand has been established. It is established, that an increase in the coating thickness from 22 to 70 nm is accompanied by a decrease in the specific transverse electrical resistance of samples from 17 to 2 GΩ·m. This effect is explained by an increase in the proportion of carbon atoms with sp2-hybridization of electronic orbitals from 86 to 91%, which leads to the appearance of an additional number of π-bonds. A mathematical model, describing the spatial distribution of current when measuring transverse I-V characteristic, has been developed. The results obtained will be useful in creating resistive layers on the electrodes of gas-discharge detectors of charged particle to limit the amount of current in the event of rare spark discharges inside them caused by the registration of random highly ionizing particles. Keywords: ( DLC), electrical properties of thin films, hybridization of electronic orbitals, Raman scattering, I-V characteristic.
  1. D. Pierroutsakou. EPJ Web Conf. 184, 1015 (2018)
  2. M. Musacci, G. Bigongiari, P. Brogi, C. Checchia, G. Collazuol, G.F. Dalla Betta, A. Ficorella, P.S. Marrocchesi, S. Mattiazzo, F. Morsani, S. Noli, L. Pancheri, L. Ratti, A. Savoy Navarro, L. Silvestrin, F. Stolzi, J. Suh, A. Sulaj, C. Vacchi, M. Zarghami. Nucl. Instrum. Meth. Phys. Res. Sect. Accel. Spectromet. Detect. Assoc. Equip. 936, 695 (2019)
  3. A. Breskin D, Mormann, A. Lyashenko, R. Chechik, F.D. Amaro, J.M. Maia J.F.C.A. Veloso, J.M.F. dos Santos. Nucl. Instrum. Meth. Phys. Res. Sect. Accel. Spectromet. Detect. Assoc. Equip. 553, 46 (2005)
  4. H. Raether. Electron avalanches and breakdown in gases. Butterworths, Washington (1964)
  5. T. Alexopoulos, J. Burnens, R. de Oliveira, G. Glonti, O. Pizzirusso, V. Polychronakos, G. Sekhniaidze, G. Tsipolitis, J. Wotschack. Nucl Instrum. Meth. A 640, 110 (2011)
  6. J. Manjarres, T. Alexopoulos, D. Attie, M. Boyer, J. Derre, G. Fanourakis, E. Ferrer-Ribas, J. Galan, E. Gazis, T. Geralis, A. Giganon, I. Giomataris, S. Herlant, F. Jeanneau, Ph. Schune, M. Titova, G. Tsipolitis. J. Instrum. 7, 12071 (2012)
  7. G. Bencivenn, R. de Oliveira, G. Felici, M. Gatta, M. Giovannetti, G. Morello, A. Ochi, M. Poli Lenera, E. Tskhadadze. J. Instrum. 14, 5014 (2019)
  8. A. Kashchuk, V. Akulich, K. Afanaciev, V. Bayev, A. Churakov, N. Kravchuk, N. Kuchinskiy, O. Levitskaya, A.V. Solin, A.A. Solin, S. Movchan, V. Tchekhovski. J. Instrum. 15, 9, 9041 (2020)
  9. M. Iodic, M. Alviggi, M.T. Camerlingo, V. Canale, M. Della Pietra, C. Di Donato, P. Iengo, F. Petrucci, G. Sekhniaidze. J. Phys. Conf. Ser. 1498, 1, 12028 (2020)
  10. V. Peskov, P. Fonte, P. Martinengo, E. Nappi, R. Oliveira, F. Pietropaolo, P. Picchi. Nucl. Instrum. Meth. Phys. Res. Sect. Accel. Spectromet. Detect. Assoc. Equip. 661, 153 (2012)
  11. V.G. Bayev, K.G. Afanaciev, S.A. Movchan, A. Gongadze, V.V. Akulich, A.O. Kolesnikov, N. Koviazina, L. Gongadze, R. Sotenskii, I. Minashvili. Nucl. Instrum. Meth. A 1031, 166528 (2022)
  12. V. Peskov, B. Baibussinov, S. Centro, A. Di Mauro, B. Lund-Jensen, P. Martinengo, E. Nappi, R. Oliveira, F. Pietropaolo, P. Picchi, L. Periale, I. Rodionov, S. Ventura. IEEE Trans. Nucl. Sci. 54, 5, 1784 (2007)
  13. I. Vankov. Pis'ma to EChAYa, 15 (10), 7 (1274). (in Russian)
  14. N.N. Koval, O.V. Krysina, V.V. Shugurov. Minsk 25, 1, 403 (2015)
  15. S.V. Mikhailova. Structure and electronic properties of films of amorphous diamond-like carbon (a-C : H) modified by metal nanocrystals. Kazakh National. un-t im. al-Farabi, Almaty (2017)
  16. A. Ferrari, J. Robertson. Phil. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 362, 2477 (2004)
  17. W.M. Haynes. CRC Handbook of Chemistry and Physics. 97th ed. CRC Press, (2016)
  18. A. Evtukh, V.G. Litovchenko, M. Strikha, A. Kurchak, O. Yilmazoglu, H. Hartnagel. Ukr. J. Phys., 62, 526 (2017)
  19. M.O. Aboelfotoh. Solid State Electron. 34, 1, 51 (1991)
  20. S. Pal, R. Kumar Tiwari, D. Chandra Gupta, A. Singh Verma. J. Mater. Phys. Chem. 2, 2, 20 (2014)
  21. S. Miyagawa, S. Nakao, J. Choi, M. Ikeyama, Y. Miyagawa. New Diam. Front. Carbon Technol. 16, 1, 6 (2006).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru