Physics of the Solid State
Volumes and Issues
New recombination centers in MBE MCT layers on (013) GaAs substrates
Dvoretsky S.A. 1, Stupak M.F. 2, Mikhailov N.N.1, Varavin V.S.1, Remesnik V.G.1, Makarov S.N. 2, Elesin A.G. 2, Verhoglyad A.G.2
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Technological Design Institute of Scientific Instrument Engineering at the Siberian Branch of the Russian Academy of Sciences (TDI SIE SB RAS), Novosibirsk, Russia
Email: dvor@isp.nsc.ru, mikhailov@isp.nsc.ru, remesnik@isp.nsc.ru, makarovsn@tdisie.nsc.ru, elesin.andrei@tdisie.nsc.ru, verhoglyad@tdisie.nsc.ru

PDF
A large inhomogeneity of the minority lifetime from 1 to 10 μs at 77 K over the area is observed in some experiments when high-quality HgCdTe layers of the electronic type of conductivity are grown on GaAs substrates with a diameter of 76.2 mm with the (013) orientation by the method of molecular beam epitaxy. As a rule, the such lifetimes are determined by carrier recombination at Shockley-Hall-Read (SHR) centers. Modern studies and ideas about the nature of the SHR centers do not allow us to explain the observed results. The measurements of HgCdTe layers by the second harmonic generation showed the existence of a quasi-periodic change in the signal at the minima of the azimuthal dependence, which is associated with the appearance of misoriented microregions of the crystal structure. The amplitude of the quasi-periodic change in the signal decreases with increasing lifetime and completely disappears for regions with higher lifetime values. Similar dependences are observed during etching of HgCdTe layers, which indicates the existence of misoriented microregions in the bulk. Thus, misoriented microregions of the crystal structure have a significant effect on the lifetime and are new centers of Shockley-Hall-Read recombination. Keywords: HgCdTe layers, lifetime, second harmonic, azimuthal angular dependences, recombination centers, misoriented microregions.
  1. W. Lei, J. Antoszewski, L. Faraone. Appl. Phys. Rev. 2, 041303 (2015). DOI: 10.1063/1.4936577
  2. V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, V.G. Remesnik, I.V. Sabinina, Yu.G. Sidorov, V.A. Shvets, M.V. Yakushev, A.V. Latyshev. Optoelectron. Instrument. Proc., 56 (5), 456, (2020). DOI: 10.3103/S8756669020050143
  3. D. K. Arch, R. A. Wood, D. L. Smitha. J. Appl. Phys. 58, 2360 (1985). DOI: 10.1063/1.33595
  4. C.A. Musca, J.F. Siliquini, G. Parish, J.M. Dell, L. Faraone. J. Cryst. Growth 184-185, 1284 (1998), DOI: 10.1016/S0022-0248(98)80266-2
  5. A.V. Filatov, E.V. Susov, N.M. Akimova, V.V. Karpov, V.I. Shaevich. Uspekhi prikladnoi fiziki 3, 2, 96 (2015). (in Russian). PACS: 85.60.Dw
  6. A.V. Filatov, E.V. Susov, V.V. Karpov, A.V. Gusarov. Uspekhi prikladnoi fiziki 9, 2, 112 (2021). (in Russian). DOI: 10.51368/2307-4469-2021-9-2-112-127
  7. L. Mollard, G. Destefanis, N. Baier, J. Rothman, P. Ballet, J.P. Zanatta, M. Tchagaspanian, A.M. Papon, G. Bourgeois, J.P. Barnes. J. Electron. Mater. 38, 9, 1805 (2009). DOI: 10.1007/s11664-009-0829-9
  8. D. Eich, W. Schirmacher, S. Hanna, K.M. Mahlein, P. Fries, H. Figgemeier. J. Electron. Mater. 46, 9, 5448 (2017). DOI: 10.1007/s11664-017-5596-4
  9. A.P. Kovchavtsev, A.A. Guzev, A.V. Tsarenko, Z.V. Panova, M.V. Yakushev, D.V. Marin, V.S. Varavin, V.V. Vasilyev, S.A. Dvoretsky, I.V. Sabinina, Yu.G. Sidorov. Infrared Phys. Technol. 73, 312 (2015). DOI: 10.1016/j.infrared.2015.09.026
  10. V.S. Varavin, I.V. Sabinina, G.Yu. Sidorov, D.V. Marin, V.G. Remesnik, A.V. Predein, S.A. Dvoretsky, V.V. Vasilyev, Yu.G. Sidorov, M.V. Yakushev, A.V. Latyshev. Infrared Phys. Technol. 105, 103182 (2020). DOI: 10.1016/j.infrared.2019.103182
  11. G. Destefanis, J. Baylet, P. Ballet, P. Castelein, F. Rothan, O. Gravrand, J. Rothman, J.P. Chamonal, A. Million. J. Electron. Mater. 36, 8, 1031 (2007). DOI: 10.1007/s11664-007-0168-7
  12. A. Rogalski. Infrared detector. 2 nd ed. CRC Press. Tayor\& Francis Group, NW. (2011). 876 p
  13. V.C. Lopes, A.J. Syllaios, M.C. Chen. Semicond. Sci. Technol. 8, 6S, 824 (1993), DOI: 10.1088/0268-1242/8/6S/006
  14. A. Rogalski. Rep. Prog. Phys. 68, 10, 2267 (2005). DOI: 10.1088/0034-4885/68/10/R01
  15. T. Yamamoto, H. Sakai, K. Tanikawa. J. Cryst. Growth 72, 1-2, 270 (1985). DOI: 10.1016/0022-0248(85)90156-3
  16. S.H. Shin, J.M. Arias, M. Zandian, J.G. Pasko, R.E. DeWames. Appl. Phys. Lett. 59, 2718 (1991). DOI: 10.1063/1.105895
  17. K. Jowikowski, A. Rogalski. J. Electron. Mater. 29, 6, 736 (2000). DOI: 10.1007/s11664-000-0217-y
  18. R. Pal, R.K. Bhan, K.C. Chhabra, O.P Agnihotri. Semicond. Sci. Technol. 11, 231, (1996). DOI: 10.1088/0268-1242/11/2/015
  19. V. Kumar, R. Pal, P. K. Chaudhury, B. L. Sharma, V. Gopal. J. Electron. Mater. 34, 9, 1225 (2005). DOI: 10.1007/s11664-005-0267-2
  20. C.A. Musca, J.F. Siliquini, K.A. Fynn, B.D. Nener, L. Faraone, S.J.C. Irvine. Semicond. Sci. Technol. 11, 12, 1912 (1996). DOI: 0.1088/0268-1242/11/12/025
  21. V.M. Osadchy, A.O. Suslyakov, V.V. Vasiliev, S.A. Dvoretsky. Avtometriya. 4, 71 (1998). (in Russian)
  22. A.V. Wojciechowski, Yu.A. Denisov, A.P. Kohanenko, V.S. Varavin, S.A. Dvoretsky, N.N. Mikhailov, Yu.G. Sidorov, M.V. Yakushev. Avtometriya. 4, 47 (1998)
  23. D.D. Edwall, M. Zandian, A.C. Chen, J.M. Arias. J. Electron. Mater. 26, 6, 493 (1997). DOI: 10.1007/s11664-997-0183-8
  24. Y.G. Sidorov, S.A. Dvorestky, V.S. Varavin, N.N. Mikhailov, M.V. Yakushev, I.V. Sabinina. Semiconductor 35, 9, 1045, (2001). DOI: 10.1134/1.1403569
  25. C.H. Swatz, R.P. Tompkins, N.C. Giles, T.H. Myers, D.D. Edwall, J. Ellworth, E. Piquette, J. Arias, M. Berding, S. Krushnamurthy, I. Vurgftman, J.R. Meyer. J. Electron. Mater. 33, 6, 728 (2004). DOI: 10.1007/s11664-004-0074-1
  26. B.P. Varavin, S.A. Dvoretsky, D.G. Ikusov, N.N. Mikhailov, Yu.G. Sidorov, G.Yu. Sidorov, M.V. Yakushev. Semiconductors 42, 6, 648 (2008). DOI: 10.1134/S1063782608060031
  27. O. Garland. Mercury Cadmium Telluride: Growth, Properties and Applications. Wiley \& Sons Ltd., West Susses (2011). P. 131
  28. C. E. Jones, K. James, J. Merz, R. Braunstein, M. Burd, M. Eetemadi, S. Hutton, J. Drumheller. J. Vac. Sci. Tech. A3, 131 (1985). DOI: 10.1116/1.573184
  29. Yue Fang-Yu, Ma Su-Yu, Hong Jin, Yang Ping-Xiong, Jing Cheng-Bin, Chen Ye, Chu Jun-Hao. Chin. Phys. B 28, 1, 017104 (2019)
  30. S.A. Dvoretskiy, M.F. Stupak, N.N. Mikhailov, S.N. Makarov, A.G. Elesin, A.G. Verkhoglyad. Optoelectron. Instrument. Proc. 57, 458, 18 (2021). DOI: 10.3103/S8756699021050058
  31. M.F. Stupak, N.N. Mikhailov, S.A. Dvoretskiy, M.V. Yakushev, D.G. Ikusov, S.N. Makarov, A.G. Elesin, A.G. Verkhoglyad. Phys. Sol. State 62, 2, 252 (2020). DOI: 10.1134/S1063783420020201
  32. V.S. Varavin, A.F. Kravchenko, Yu.G. Sidorov. Semiconductors 35, 9, 992 (2001). DOI: 10.1134/1.1403562
  33. A.V. Vishnyakov, V.S. Varavin, M.O. Gariffulin, A.V. Predein, V.G. Remesnik, I.V. Sabinina, Yu.G. Sidorov. Optoelectron. Instrument. Proc. 45, 4, 308 (2009). DOI: 10.3103/S8756699009040049
  34. P.A. Borodovsky, A.F. Buldygin, A.S. Tokarev. Semiconductors 38, 9, 1005 (2004). DOI: 10.1134/1.1797476
  35. M.F. Stupak, N.N. Mikhailov, S.A. Dvoretskiy, S.N. Makarov, A.G. Elesin, A.G. Verkhoglyad. ZhTF 91, 11, 1799 (2021). DOI: 10.21883/JTF.2021.11.51546.34-21
  36. V.V. Balanyuk, V.F. Krasnov, S.L. Musher, V.I. Prots, V.E. Ryabchenko, S.A. Stoyanov, S.G. Struts, M.F. Stupak, V.S. Syskin. Quantum Electron 25, 2, 183 (1995). DOI: 10.1070/QE1995v025n02ABEH000320
  37. P.E. Berezhnaya, M.F. Stupak. Proc. of SPIE 4900, 98 (2002). DOI: 10.1117/12.484486
  38. G.M. Borisov, V.G. Gol'dort, K.S. Zhuravlev, A.A. Kovalev, S.A. Kochubey, D.V. Ledovskikh, T.V. Malin, N.N. Rubtsova. Sib.fiz.zhurn. 13, 2, 64 (2018). (in Russian). DOI: 10.25205/2541-9447-2018-13.
  39. S.A. Akhmanov, V.I. Yemelyanov, N.I. Koroteev, V.V. Seminogov. Sov. Phys. Usp. 28, 1084 (1985). DOI: 10.1070/PU1985v028n12ABEH003986
  40. T.F. Heinz. Nonlinear Surface Electromagnetic Phenomena. North Holland Pub. (1991). P. 353
  41. H.R. Vydyanath. J. Electron. Mater. 24, 9, 1275 (1995). DOI: 10.1007/BF02653085
  42. L. He, Y. Wu, L. Chen, S.L. Wang, M.F. Yu, Y.M. Qiao, J.R. Yang, Y.J. Li, R.J. Ding, Q.Y. Zhang. J. Cryst. Growth 227-228, 677 (2001). DOI: 10.1016/S0022-0248(01)00801-6
  43. Y. S. Ryu, B. S. Song, T.W. Kang, T.W. Kim. J. Mater. Sci. 39, 1147 (2004). DOI: 10.1023/B:JMSC.0000012966.19192.85
  44. Y.G. Sidorov, M.V. Yakushev, V.S. Varavin, A.V. Kolesnikov, E.M. Trukhanov, I.V. Sabinina, I.D. Loshkarev. Phys. Solid State 57, 11, 2151 (2015). DOI: 10.1134/S1063783415110311

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru