Formation of germanium nanocrystals and amorphous nanoclusters in GeO[SiO] and GeO[SiO2] films using electron beam annealing
Konstantinov V. O. 1, Baranov E. A. 1, Fan Zhang2,3, Shchukin V. G. 1, Zamchiy A. O.1,2, Volodin V. A. 2,3
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
3Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: konstantinov@itp.nsc.ru, itpbaranov@gmail.com, 840003068@qq.com, shchukin@itp.nsc.ru, zamchiy@gmail.com, volodin@isp.nsc.ru

PDF
Electron beam annealing was carried out to form amorphous and crystalline germanium clusters in GeO[SiO] and GeO[SiO2] films deposited on quartz and monocrystalline silicon substrates. Using electron microscopy, Raman spectroscopy, and light transmission and reflection spectroscopy, the structural transformations of the films and their optical properties were studied. From the analysis of Raman spectra, it was shown that amorphous germanium nanoclusters are present in the as-deposited GeO[SiO] film, while they are not observed in the as-deposited GeO[SiO2] film. Regimes of electron beam annealing which are necessary for the formation of germanium nanocrystals in GeO[SiO] and GeO[SiO2] films were found. It was shown that, at the same annealing parameters, the fraction of the crystalline phase of germanium in GeO[SiO] films were smaller than in GeO[SiO2] films. In addition, it was found that the fraction of the crystalline phase at the same annealing parameters is larger for films on a quartz substrate than on monocrystalline silicon substrate. The sizes of germanium nanocrystals formed as a result of electron beam annealing were determined from Raman spectra analysis. The proposed method of obtaining amorphous germanium nanoclusters and nanocrystals in films of nonstoichiometric germanosilicate glasses using electron beam annealing can be used to create ordered arrays of such nanostructures. Keywords: films of nonstoichiometric germanosilicate glass, electron beam annealing, germanium nanoclusters and nanocrystals.
  1. E.G. Barbagiovanni, D.J. Lockwood, P.J. Simpson, L.V. Goncharova. Appl. Phys. Rev., 1, 011302 (2014). DOI: 10.1063/1.4835095
  2. D. Carolan. Prog. Mater Sci., 90, 128 (2017). DOI: 10.1016/J.PMATSCI.2017.07.005
  3. V.G. Dyskin, M.U. Dzhanklych. Appl. Sol. Energy, 57, 252 (2021). DOI: 10.3103/S0003701X2103004X
  4. S.M. Sze. Physics of Semiconductor Devices, 2nd ed. (Wiley, NY., 1981), p. 789
  5. Y. Minoura, A. Kasuya, T. Hosoi, T. Shimura, H. Watanabe. Appl. Phys. Lett., 103, 033502 (2013). DOI: 10.1063/1.4813829
  6. Y. Kamata. Mater. Today, 11, 30 (2008). DOI: 10.1016/S1369-7021(07)70350-4
  7. M. Shang, X. Chen, B. Li, J. Niu. ACS Nano, 14, 3678 (2020). DOI: 10.1021/acsnano.0c00556
  8. I. Stavarache, C. Logofatu, M.T. Sultan, A. Manolescu, H.G. Svavarsson, V.S. Teodorescu, M.L. Ciurea. Sci. Rep., 10, 3252 (2020). DOI: 10.1038/s41598-020-60000-x
  9. M. Ardyanian, H. Rinnert, M. Vergnat. J. Appl. Phys., 100, 113106 (2006). DOI: 10.1063/1.2400090
  10. S.K. Wang, H. Liu, A. Toriumi. Appl. Phys. Lett., 101, 2 (2012). DOI: 10.1063/1.4738892
  11. F. Zhang, S.A. Kochubey, M. Stoffel, H. Rinnert, M. Vergnat, V.A. Volodin. Semiconductors, 54 (3), 322 (2020). DOI: 10.1134/S1063782620030070
  12. Sh. Rath, D. Kabiraj, D.K. Avasthi, A. Tripathi, K.P. Jain, Manoj Kumar, H.S. Mavi, A.K. Shukla. Nucl. Instrum. Methods Phys. Res. Sect. B, 263, 419 (2007). DOI: 10.1016/j.nimb.2007.07.018
  13. M. Okugawa, R. Nakamura, H. Numakura, M. Ishimaru, H. Yasuda. J. Appl. Phys., 120, 134308 (2016). DOI: 10.1063/1.4964332
  14. R. Nakamura, A. Matsumoto, M. Ishimaru. J. Appl. Phys., 129, 215301 (2021). DOI: 10.1063/5.0052142
  15. F. Zhang, V.A. Volodin, E.A. Baranov, V.O. Konstantinov, V.G. Shchukin, A.O. Zamchiy, M. Vergnat. Vacuum, 197, 110796 (2022). DOI: 10.1016/j.vacuum.2021.110796
  16. V.A. Volodin, P. Geydt, G.N. Kamaev, A.A. Gismatulin, G.K. Krivyakin, I.P. Prosvirin, I.A. Azarov, F. Zhang, M. Vergnat. Electron MDPI, 9, 2103 (2020). DOI: 10.3390/electronics9122103
  17. S.R.M. da Silva, G.K. Rolim, G.V. Soares, I.J.R. Baumvol, C. Krug, L. Miotti, F.L. Freire, Jr., M.E.H.M. da Costa, C. Radtke. Appl. Phys. Lett., 100, 191907 (2012). DOI: 10.1063/1.4712619
  18. V.G. Shchukin, V.O. Konstantinov, V.S. Morozov. Tech. Phys., 63 (6), 888 (2018). DOI: 10.1134/S1063784218060191
  19. E.A. Baranov, V.O. Konstantinov, V.G. Shchukin, A.O. Zamchiy, I.E. Merkulova, N.A. Lunev, V.A. Volodin. Tech. Phys. Lett., 47, 287 (2021). DOI: 10.1134/S1063785021030172
  20. V.A. Volodin, M.P. Gambaryan, A.G. Cherkov, M. Stoffel, H. Rinnert, M.Vergnat. Mater. Res. Express, 3, 085019 (2016). DOI: 10.1088/2053-1591/3/8/085019
  21. M.P. Gambaryan, G.K. Krivyakin, S.G. Cherkova, M. Stoffel, H. Rinnert, M. Vergnat, V.A. Volodin Phys. Solid State, 62 (3), 492 (2020). DOI: 10.1134/S1063783420030105]
  22. W. Wihl, M. Cardona, J. Tauc. J. Non-Cryst. Solids, 8-10, 172 (1972). DOI: 10.1016/0022-3093(72)90132-9
  23. V.A. Volodin, G.N. Kamaev, V.A. Gritsenko, A.A. Gismatulin, A. Chin, M. Vergnat. Appl. Phys. Lett., 114, 233104 (2019). DOI: 10.1063/1.5079690
  24. V.A. Volodin, D.V. Marin, V.A. Sachkov, E.B. Gorokhov, H. Rinnert, M. Vergnat. JETF, 145, 77 (2014). DOI: 10.7868/S0044451014010076
  25. F. Cerdeira, C.J. Buchenauer, F.H. Pollak, M. Cardona. Phys. Rev. B, 5, 580 (1972). DOI: 10.1103/PhysRevB.5.580

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru