Physical-mechanical properties of synthesized layers of Ti-Ni-Nb-based surface alloys, formed on the surface of TiNi alloy
D'yachenko F. A.1, Semin V. O.1, Neiman A. A.1, Shugurov A. R.1, Meisner L. L.1, Ostapenko M. G.1
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
Email: dfa@ispms.ru, lpfreedom14@gmail.com, nasa@ispms.tsc.ru, shugurov@ispms.tsc.ru, llm@ispms.tsc.ru, artifakt@ispms.tsc.ru

PDF
The physical-mechanical properties (microhardness, Young's modulus, plasticity characteristic, shape recovery ratio) of the synthesized layers of Ti-Ni-Nb-based surface alloys of ~2 μm thickness, formed on the surface of TiNi alloy by the additive thin-film electron beam method were investigated by the instrumented indentation. It was found that the change in physical-mechanical properties in the synthesized surface alloys based on Ti-Ni-Nb is due to their layered structure. In particular, it is due to the thickness of the sublayers, their phase composition, and the structural states of the phases (nanocrystalline and amorphous). It was established that high strength and elastic-plastic parameters of the outer layer and a monotonic change in the physical-mechanical properties from the surface to TiNi substrate are provided in the surface Ti-Ni-Nb alloy with a lower volume fraction of the amorphous phase in the synthesized layers. It was found that the multilayer structure of the surface Ti-Ni-Nb alloy and the monotonically change in the physical-mechanical properties to the substrate ensure high mechanical compatibility of the synthesized layers of surface alloys with the TiNi substrate. Keywords: nickel titanium alloy, additive thin-film electron-beam synthesis, surface alloy, structure, physical-mechanical properties.
  1. J. Zhu, Q. Zeng, T. Fu. Corros. Rev., 37, 539 (2019). DOI: 10.1515/corrrev-2018-0104
  2. J.J. Mohd, M. Leary, A. Subic, M.A. Gibson. Mater. Des., 56, 1078 (2014). DOI: 10.1016/j.matdes.2013.11.084
  3. D.F. Williams. Biomaterials, 29, 2941 (2008). DOI: 10.1016/j.biomaterials.2008.04.023
  4. C.L. Chu, R.M. Wang, T. Hu, L.H. Yin, Y.P. Pu, P.H. Lin, S.L. Wu, C.Y. Chung, K.W.K. Yeung, P.K. Chu. Mater. Sci. Eng., C, 28, 1430 (2008). DOI: 10.1016/j.msec.2008.03.009
  5. A. Tuissi, S. Carr, J. Butler, A.A. Gandhi, L. O'Donoghue, K. McNamara, J.M. Carlson, S. Lavelle, P. Tiernan, C.A. Biffi, P. Bassani, S.A.M. Tofail. Shap. Mem. Superelasticity, 2, 196 (2016). DOI: 10.1007/s40830-016-0066-z
  6. Novel Nanocomposite Coatings. Advances and Industrial Applications, ed. by R. Daniel, J. Musil (Jenny Stanford Publishing, 2014), 344 p. DOI: 10.1201/b15648
  7. H. Jia, F. Liu, Z. An, W. Li, G Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw. Thin Solids Films, 561, 2 (2014). DOI: 10.1016/j.tsf.2013.12.024
  8. E.V. Yakovlev, A.B. Markov, D.A. Shepel, V.I. Petrov, A.A. Neiman. Russ. Phys. J., 63, 1804 (2021). DOI: 10.1007/s11182-021-02237-1
  9. S.N. Meisner, E.V. Yakovlev, V.O. Semin, L.L. Meisner, V.P. Rotshtein, A.A. Neiman, F. D'yachenko. Appl. Surf. Sci., 437, 217 (2018). DOI: 10.1016/j.apsusc.2017.12.107
  10. L.L. Meisner, V.P. Rotshtein, V.O. Semin, S.N. Meisner, A.B. Markov, E.V. Yakovlev, F.A. D'yachenko, A.A. Neiman, E.Yu. Gudimova. Surf. Coat. Technol., 404, 126455 (2020). DOI: 10.1016/j.surfcoat.2020.126455
  11. L.L. Meisner, V.P. Rotshtein, V.O. Semin, A.B. Markov, E.V. Yakovlev, S.N. Meisner, D.A. Shepel, A.A. Neiman, E.Yu. Gudimova, F.A. D'yachenko, R.R. Mukhamedova. Mater. Charact., 166, 110455 (2020). DOI: 10.1016/j.matchar.2020.110455
  12. Y.-L. Zhou, M. Niinomi, T. Akahori, H. Fukui, H. Toda. Mater. Sci. Eng., A, 398, 28 (2005). DOI: 10.1016/j.msea.2005.03.032
  13. K. Li, Y. Li, X. Huang, D. Gibson, Y. Zheng, J. Liu, L. Sun, Y.-Q. Fu. Appl. Surf. Sci., 414, 63 (2017). DOI: 10.1016/j.apsusc.2017.04.070
  14. Medical Coatings and Deposition Technologies, ed. by D.A. Glocker, S. Ranade (Wiley-Scrivener, 2016), 800 p
  15. N.H. Marins, C.T.W. Meereis, R.M. Silva, C.P. Ruas, A.S. Takimi, N.L.V. Carreno, F.A. Ogliari. Polym. Bull., 75, 2301 (2018). DOI: 10.1007/s00289-017-2150-8
  16. G.E. Ozur, D.I. Proskurovsky. Plasma Phys. Rep., 44, 18 (2018). DOI: 10.1134/S1063780X18010130
  17. W.C. Oliver, G.M. Pharr. J. Mater. Res., 19, 3 (2004). DOI: 10.1557/jmr.2004.19.1.3
  18. Yu.V. Milman. J. Phys. D: Appl. Phys., 41, 074013 (2008). DOI: 10.1088/0022-3727/41/7/074013
  19. W. Ni, Y.-T. Cheng, D.S. Grummon. Surf. Coat. Technol., 177-178, 512 (2004). DOI: 10.1016/S0257-8972v Z03.00920-4
  20. I.E. Permyakova, A.M. Glezer. Perspektivnyye materialy i tekhnologii: monografiya, 1, 5 (2019) (in Russian) DOI: 10.26201/ISSP.2019.45.557/Adv.mater.V.1.Ch.1
  21. H.W. Zhang, G. Subhash, X.N. Jing, L.J. Kecskes, R.J. Dowding. Philos. Mag. Lett., 86, 333 (2006). DOI: 10.1080/09500830600788935

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru