Features of the low-temperature conductivity of organometallic perovskite films with the introduction of graphene oxide particles into them
Ovezov M. K.1, Aleshin P. A.1, Aleshin A. N.1
1Ioffe Institute, St. Petersburg, Russia
Email: strontiumx94@gmail.com, aleshinp@gmail.com, aleshin@transport.ioffe.ru
The influence of the introduction of graphene oxide (GO) particles on the low-temperature conductivity of composite films based on organometallic perovskites CH3NH3PbBr3 with GO particles with a concentration of 0-5 wt.% has been studied. It has been established that the introduction of GO particles into ITO/CH3NH3PbBr3 : GO/ITO/glass films manifests itself in a decrease in the activation energy of the temperature dependence of the conductance. A sharp increase by 5-6 orders of magnitude of the resistance of the films at temperatures below 150 K was found. It is assumed that in the studied CH3NH3PbBr3 : GO systems at T>150 K, the hopping mechanism of transport predominates, associated with the capture and accumulation of charge carriers in GO particles, and the increase in resistance at T<150 K may be due to the structural phase transition characteristic of organometallic perovskites in this temperature range. Keywords: organometallic perovskites, graphene oxide, electrical conductivity, low-temperature transport.
- L. Schmidt-Mende, V. Dyakonov, S. Olthof, F. Unlu, K. Moritz Trong L\^e, S. Mathur, A.D. Karabanov, D.C. Lupascu, L.M. Herz, A. Hinderhofer, F. Schreiber, A. Chernikov, D.A. Egger, O. Shargaieva, C. Cocchi, E. Unger, M. Saliba, M.M. Byranvand, M. Kroll, F. Nehm, K. Leo, A. Redinger, J. Hocker, T. Kirchartz, J. Warby, E. Gutierrez-Partida, D. Neher, M. Stolterfoht, U. Wurfel, M. Unmussig, J. Herterich, C. Baretzky, J. Mohanraj, M. Thelakkat, C. Maheu, W. Jaegermann, T. Mayer, J. Rieger, T. Fauster, D. Niesner, F. Yang, S. Albrecht, T. Riedl, A. Fakharuddin, M. Vasilopoulou, Y. Vaynzof, D. Moia, J. Maier, M. Franckevicius, V. Gulbinas, R.A. Kerner, L. Zhao, B.P. Rand, N. Gluck, T. Bein, F. Matteocci, L.A. Castriotta, A. Di Carlo, M. Scheffler, C. Draxl. APL Mater. 9, 109202 (2021)
- A. Younis, C.-Ho Lin, X. Guan, S. Shahrokhi, C.-Yu Huang, Y. Wang, T. He, S. Singh, L. Hu, J.R. D. Retamal, Jr-H. He, T. Wu. Adv. Mater. 33, 2005000 (2021)
- A.K. Chilvery, A.K. Batra, B. Yang, K. Xiao, P. Guggilla, M.D. Aggarwal, R. Surabhi, R.B. Lal, J.R. Currie, B.G. Penn. J. Photon. Energy 5, 057402 (2015)
- C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis. Inorg. Chem. 52, 9019 (2013)
- A. Pisoni, J. Jacimovic, O.S. Barisic, M. Spina, R. Gaal, L. Forro, E. Horvath. J. Phys. Chem. Lett. 5, 2488 (2014)
- A.M. Ershova, M.K. Ovezov, I.P. Scherbakov, A.N. Aleshin. Physics of the Solid State, 61, 103 (2019)
- H.S. Jung, N.-G. Park. Small 11, 10 (2015)
- X. Wu, H. Yu, J. Cao. AIP Advances 10, 085202 (2020)
- H. He, J. Klinowski, M. Forster, A. Lerf. Chem. Phys. Lett. 287, 53 (1998)
- A.V. Arkhipov, G.V. Nenashev, A.N. Aleshin. Physics of the Solid State, 63, 525, (2021)
- S.M. Sze. Physics of semiconductor devices. 2nd ed. John Wiley \& Sons (1981)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.