Electronic structure of vacancy-type defects in hexagonal boron nitride
Perevalov T. V. 1, Gritsenko V. A. 1,2, Bukhtiyarov A. V. 3, Prosvirin I. P. 3
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
3Boreskov Institute of Catalysis, Siberian Branch of RAS, Novosibirsk, Russia
Email: timson@isp.nsc.ru, grits@isp.nsc.ru, avb@catalysis.ru, prosvirin@catalysis.ru

PDF
The electronic structure of vacancy-type defects in hexagonal boron nitride (h-BN) synthesized by chemical vapor deposition, promising for microelectronics, is studied. The research is carried out using X-ray photoelectron spectroscopy and a simulation within the density functional theory. It is shown that the h-BN bombardment with argon ions leads not only to the near-surface layer cleaning from organic pollutants, but also to the generation of a high intrinsic defects concentration, mainly boron-nitrogen divacances. The greater the boron-nitrogen divacances concentration is, the longer the bombardment time is. The boron-nitrogen divacansion in h-BN is a significantly more energetically favorable defect than that of isolated boron and nitrogen vacancies. It is concluded that the most probable diamagnetic vacancy-type defects capable of participating in localization and, as a consequence, in charge transport in h-BN films is the boron-nitrogen divacancy. Keywords: boron nitride (BN), photoelectron spectroscopy (XPS), quantum chemical simulation, density functional theory (DFT).
  1. G. Cassabois, P. Valvin, B. Gil. Nature Photon. 10, 262 (2016)
  2. L. Song, L.J. Ci, H. Lu, P.B. Sorokin, C.H. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan. Nano Lett. 10, 3209 (2010)
  3. M.Y. Li, S.K. Su, H.S.P. Wong, L.J. Li. Nature 567, 169 (2019)
  4. K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim. Nature 490, 192 (2012)
  5. H. Pandey, M. Shaygan, S. Sawallich, S. Kataria, W. Zhenxing, A. Noculak, M. Otto, M. Nagel, R. Negra, D. Neumaier, M.C. Lemme. IEEE Trans. Electron Dev. 65, 4129 (2018)
  6. F. Hui, M.A. Villena, W.J. Fang, A.Y. Lu, J. Kong, Y.Y. Shi, X. Jing, K.C. Zhu, M. Lanza. 2D Mater. 5, 031011 (2018)
  7. Y.Y. Shi, X.H. Liang, B. Yuan, V. Chen, H.T. Li, F. Hui, Z.C.W. Yu, F. Yuan, E. Pop, H.S.P. Wong, M. Lanza. Nature Electron. 1, 458 (2018)
  8. A.A. Sokolov, A.A. Ovchinnikov, K.M. Lysenkov, D.E. Marchenko, E.O. Filatova. ZhTF 80, 131 (2010) (in Russian)
  9. C. Morant, A. Fernandez, A.R. Gonzalezelipe, L. Soriano, A. Stampfl, A.M. Bradshaw, J.M. Sanz. Phys. Rev. B 52, 11711 (1995)
  10. P.H. Holloway, G.C. Nelson. J. Vac. Sci. Technol. 16, 793 (1979)
  11. T.V. Perevalov, D.R. Islamov, A.A. Saraev. Pisma v ZhTF, 42, 97 (2016) (in Russian)
  12. T.V. Perevalov, R.M.Kh. Iskhakzai, V.Sh. Aliev, V.A. Gritsenko, I.P. Prosvirin. ZhETF 158, 1083 (2020) (in Russian)
  13. V.A. Gritsenko, T.V. Perevalov, V.A. Voronkovskii, A.A. Gismatulin, V.N. Kruchinin, V.S. Aliev, V.A. Pustovarov, I.P. Prosvirin, Y. Roizin. ACS Appl. Mater. Int. 10, 3769 (2018)
  14. A. Sajid, J.R. Reimers, M.J. Ford. Phys. Rev. B 97, 064101 (2018)
  15. L. Weston, D. Wickramaratne, M. Mackoit, A. Alkauskas, C.G. Van de Walle. Phys. Rev. B 97, 214104 (2018)
  16. A. Zobelli, C.P. Ewels, A. Gloter, G. Seifert. Phys. Rev. B 75, 094104 (2007)
  17. K.K. Kim, A. Hsu, X.T. Jia, S.M. Kim, Y.M. Shi, M. Dresselhaus, T. Palacios. J. Kong, ACS Nano 6, 8583 (2012)
  18. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.Y. Ko, A. Kokalj, E. Kucukbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni. J. Phys. Condens. Mater. 29, 465901 (2017)
  19. S. Behura, P. Nguyen, S.W. Che, R. Debbarma, V. Berry. J. Am. Chem. Soc. 137, 13060 (2015)
  20. H. Sediri, D. Pierucci, M. Hajlaoui, H. Henck, G. Patriarche, Y.J. Dappe, S. Yuan, B. Toury, R. Belkhou, M.G. Silly, F. Sirotti, M. Boutchich, A. Ouerghi. Sci Rep. 5, 16465 (2015)
  21. S.S. Gao, Q.D. An, Z.Y. Xiao, S.R. Zhai, D.J. Yang. ACS Appl. Nano Mater. 1, 5895 (2018)
  22. Z.H. Cui, A.J. Oyer, A.J. Glover, H.C. Schniepp, D.H. Adamson. Small 10, 2352 (2014)
  23. A.T. Barton, R. Yue, S. Anwar, H. Zhu, X. Peng, S. McDonnell, N. Lu, R. Addou, L. Colombo, M.J. Kim, R.M. Wallace, C.L. Hinkle. Microelectron. Eng. 147, 306 (2015)
  24. R.S. Singh, R.Y. Tay, W.L. Chow, S.H. Tsang, G. Mallick, E.H.T. Teo. Appl. Phys. Lett. 104, 163101 (2014)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru