Ion-beam lithography: modelling and analytical description of the deposited in resist energy
Shabelnikova Ya. L. 1, Zaitsev S.I.1
1Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
Email: janeshabeln@yandex.ru

PDF
The energy deposited in resist during its exposure by ion beam was simulated for ions from a set of rare gases and for gallium. It was shown that the distribution of energy density can be approximated by the product of two Gaussian functions. One of them describes the lateral distribution of energy, the second the dependence on depth. The widths and centres of these Gaussian functions are determined by the energy length (also mentioned in the literature as "Range" or "mean length of trajectories"), the mass of ions and the average atomic number of resist. The obtained description would make it possible to estimate the size of the resist modified volume for any type of ion with energy of tens keV. So it can be used for a priori estimates of resolution and performance, as well as for the choice of beam energy and ion type based on this. Keywords: lithography, nanostructuring, ion beam, resist, modeling, deposited energy.
  1. Microlithography Science and Technology, Second Edition, ed. by K. Suzuki, B.W. Smith. (CRC Press, 2007), p. 864
  2. K. Lucas, S. Postnikov, C. Henderson, S. Hector. Lithography: Concepts, Challenges and Prospects. In Nano and Giga Challenges in Microelectronics, ed. by J. Greer, A. Korkin, J. Labanowski (Elsevier, 2003), p. 69
  3. A. Joshi-Imre, S. Bauerdick. J. Nanotechnology, 2014 (6), 170415 (2014). http://dx.doi.org/10.1155/2014/170415
  4. P. Li, S. Chen, H. Dai, Z. Yang, Z. Chen, Y. Wang, Y. Chen, W. Peng, W. Shana, H. Duan. Nanoscale, 4, 1529 (2021). https://doi.org/10.1039/D0NR07539F
  5. F.I. Allen. Beilstein J. Nanotechnol., 12, 633 (2021). https://doi.org/10.3762/bjnano.12.52
  6. S. He, R. Tian, W. Wu, W.-D. Li, D. Wang. Int. J. Extrem. Manuf., 3, 012001 (2021). https://doi.org/10.1088/2631-7990/abc673
  7. Y. Kudriavtsev, A. Villegas, A. Godines, R. Asomoza. Appl. Surf. Sci., 239, 273 (2005). https://doi.org/10.1016/J.APSUSC.2004.06.014
  8. J.R. McNeil, J.J. McNally, P.D. Reader. Ion Beam Deposition. In Handbook of Thin-Film Deposition Processes and Techniques --- Principles, Methods, Equipment and Applications, 2nd Edition (William Andrew Publishing / Noyes, 2002), p. 463
  9. J. Gierak. Focused Ion Beam Direct-Writing. In Lithography, ed. by S. Landis (Wiley-ISTE, 2010), p. 184
  10. A.D. Dubner. Mechanism of Ion Beam Induced Deposition, PhD Thesis (MIT, 1990)
  11. J. Mengailis. Procc. SPIE, 1465, 36 (1991). https://doi.org/10.1117/12.47341
  12. J.S. Ro, C.V. Thompson, J. Melngailis. J. Vac. Sci. Technol. B, 12, 73 (1994). https://doi.org/10.1116/1.587111
  13. A.D. Ratta. Focused Ion Beam Induced Deposition of Copper, Master's Thesis (MIT, 1993)
  14. M. Komuro, N. Atoda, H. Kawakatsu. J. Electrochem. Soc.: Solid State Sci. Technol., 126 (3), 483 (1979). https://doi.org/10.1149/1.2129067
  15. R.L. Kubena, J.W. Ward, F.P. Stratton, R.J. Joyce, G.M. Atkinson. J. Vac. Sci. Technol. B, 9 (6), 3079 (1991). https://doi.org/10.1116/1.585373
  16. K. Arshak, M. Mihov, Sh. Nakahara, A. Arshak, D. McDonagh. Superlattices Microstructures, 36, 335 (2004). https://doi.org/10.1016/J.SPMI.2004.08.030
  17. Ya.L. Shabelnikova, S.I. Zaitsev, N.R. Gusseinov, M.T. Gabdullin, M.M. Muratov. Semiconductors, 54 (14), 1854 (2020). https://doi.org/10.1134/S1063782620140262
  18. M.M. Muratov, M.M. Myrzabekova, N.R. Guseinov, R. Nemkayeva, D.V. Ismailov, Ya.L. Shabelnikova, S.I. Zaitsev. J. Nano-and Electron. Phys., 12 (4), 40038 (2020). https://doi.org/10.21272/jnep.12(4).04038
  19. J.F. Ziegler. SRIM --- the Stopping and Range of Ions in Matter, 2013. http://www.srim.org
  20. K. Vutova, G. Mladenov. J. Optoelectron. Adv. Mater., 10, 233 (2008)
  21. G. Mladenov, K. Vutova, I. Raptis, P. Argitis, I. Rangelow. Microelectron. Eng., 57-58, 335 (2001). https://doi.org/10.1016/S0167-9317(01)00521-4
  22. K. Vutova, G. Mladenov. Computer Simulation of Processes at Electron and Ion Beam Lithography, Part 1: Exposure Modeling at Electron and Ion Beam Lithography. In Lithography, ed. by M. Wang (IntechOpen, London. 2010), https://doi.org/10.5772/8183

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru