Electrical and optical properties of cobalt oxide thin films, prepared by ion-beam sputtering
Gabriel's K. S. 1, Kalinin Yu. E. 1, Makagonov V. A. 1, Pankov S. Yu. 1, Sitnikov A. V. 1
1Voronezh State Technical University, Voronezh, Russia
Email: vlad_makagonov@mail.ru

PDF
Optical and electrical properties of cobalt oxide thin films obtained by ion-beam sputtering in argon atmosphere and argon with the addition of oxygen (PAr=1.1·10-5 Torr) has been investigated in the work. Optical properties investigations showed that, for films of cobalt oxide obtained in argon atmosphere, the optical band gap is independent of the film thickness and is 3.24 eV, which is in the range of given in the literature for the CoO phase values. For cobalt oxide films obtained in mixed atmosphere of argon with the addition of oxygen, two direct optical transitions with energies of 1.45 and 2.1 eV were detected. The presence of two direct allowed optical transitions is associated with the variable valence of cobalt in the Co3O4 compound and the presence of two valence states Co2+ and Co3+. The dependences of specific electrical conductivity of the synthesized films on the magnitude of the electric field were studied. It was found that for all investigated samples, the electrical conductivity does not depend on the electric field strength up to the value of E=106 V/m. The nonlinearity of the dependence of specific electrical conductivity of the synthesized films on electric field strength at E>106 V/m is discussed in terms of the hopping conductivity model and the trap ionization model described by the Poole?Frenkel effect. Keywords: oxide semiconductors, optical absorption coefficient, electrical conductivity, strong electric fields.
  1. A.B. Posadas, A.O. Hara, S. Rangan, R.A. Bartynski, A.A. Demkov. Appl. Phys. Lett., 104 (9), 092901 (2014). DOI: 10.1063/1.4867085
  2. P. Mele, T. Endo, S. Arisawa, C. Li, T. Tsuchiya. Oxide Thin Films, Multilayers, and Nanocomposites (Springer International Publishing, Switzerland, 2015), DOI: 10.1007/978-3-319-14478-8
  3. S.S. Aplesnin, A.N. Masyugin, V.V. Kretinin, S.O. Konovalov, N.P. Shestakov. Phys. Solid State, 63 (2), 242 (2021). DOI: 10.1134/S1063783421020025
  4. D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello. Chem. Mater., 13 (2), 588 (2001). DOI: 10.1021/cm001041x
  5. M. Salavati-Niasari, Z. Fereshteh, F. Davar. Polyhedron., 28 (6), 1065 (2009). DOI: 10.1016/j.poly.2009.01.012
  6. R. Xu, J. Wang, G. Sun, E. Wang, S. Li, J. Gu, M. Ju. J. Solid State Chem., 182 (11), 3177 (2009). DOI: 10.1016/j.jssc.2009.08.033
  7. K. Choi, H. Kim, D. Liu, G. Cao, J. Lee. Sensors \& Actuators B: Chemical, 146 (1), 183 (2010). DOI: 10.1016/j.snb.2010.02.050
  8. Ch. Sun, X. Su, F. Xiao, Ch. Niu, J. Wang. Sensors \& Actuators B: Chemical, 157 (2), 681 (2011). DOI: 10.1016/j.snb.2011.05.039
  9. U.L. Mostovaya. Sintez i osnovnye kolloidno-khimicheskie svoistva zoley kislorodsoderzhashchikh soedineniy kobalta: diss. kand. khim. nauk (02.00.11) (Ros. khim.-tekhnol. un-t im. D.I. Mendeleeva, M., 2014) (in Russian)
  10. V. O'Shea, N. Homs, E. Pereira, R. Nafria, P. Piscina. Catalysis Today, 126 (1-2), 148 (2007). DOI: 10.1016/j.cattod.2006.10.002
  11. St. Costacurta, L. Malfatti, Pl. Innocenzi, H. Amenitsch, A. Masili, A. Corrias, M.Fr. Casula. Microporous and Mesoporous Mater., 115 (3), 338 (2008). DOI: 10.1016/j.micromeso.2008.02.003
  12. S.A. Gridnev, Yu.E. Kalinin, A.V. Sitnikov, O.V. Stogney. Nelineynye yavleniya v nano- i mikrogeterogennykh sistemakh (Binom, Laboratoriya znaniy, M., 2012) (in Russian)
  13. P. Prieto, J.F. Marco, A. Serrano, M. Manso, J. de la Figuera. J. Alloys Compounds, 810, 151912 (2019). DOI: 10.1016/j.jallcom.2019.151912
  14. T. Dong, H. Suk, H. Hosun. J. Korean Phys. Soc., 50 (3), 632 (2007). DOI: 10.3938/jkps.50.632
  15. L. Qiao, H.Y. Xiao, H.M. Meyer, J.N. Sun, C.M. Rouleau, A.A. Puretzky, M.D. Biegalski. J. Mater. Chem. C, 1 (31), 4628 (2013). DOI: 10.1039/C3TC30861H
  16. C.S. Cheng, M. Serizawa, H. Sakata, T. Hirayama. Mater. Chem. Phys., 53 (3), 225 (1998). DOI: 10.1016/S0254-0584(98)00044-3
  17. K.A. Nasyrov, V.A. Gritsenko. UFN, 183 (10), 1099 (2013) (in Russian). DOI: 10.3367/UFNr.0183.201310h.1099
  18. R.M. Hill. Philosophical Magazine, 24 (8), 1307 (1971). DOI: 10.1080/14786437108217414
  19. Ya.I. Frenkel. ZhETF, 8, 1292 (1938) (in Russian)
  20. M. Lenzlinger, E.H. Snow. J. Appl. Phys., 40, 278 (1969). DOI: 10.1063/1.1657043
  21. R. Li, S. Jiang, L. Gao, Y. Li. J. Appl. Phys., 112 (7), 074113 (2012). DOI: 10.1063/1.4757952

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru