Negative current feedback in the accelerating gap in electron sources with a plasma cathode
Vorobyov M.S. 1, Moskvin P.V. 1, Shin V.I. 1, Koval T.V. 2, Devyatkov V.N. 1, Doroshkevich S. Yu. 1, Koval N.N. 1, Torba M.S. 1, Ashurova K.T. 1
1Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
2Tomsk Polytechnic University, Tomsk, Russia
Email: vorobyovms@yandex.ru, pavelmoskvin@mail.ru, shin.v.i@yandex.ru, tvkoval@mail.ru, vlad@opee.hcei.tsc.ru, doroshkevich096@gmail.com, koval@hcei.tsc.ru, mtorba9@gmail.com, 11k.ashurovak@gmail.com

PDF
Using the example of an electron source with a plasma cathode based on a low-pressure arc discharge with grid stabilization of the cathode/emission plasma boundary and an open anode/beam plasma boundary, a mechanism is described for increasing the electrical strength of a high-voltage accelerating gap by introducing a series negative current feedback (NCF) in the accelerating interval, which makes it possible to level out uncontrolled bursts of the beam current during its pulse. The introduction of NCF is achieved by using a special electrode in the space of the plasma emitter connected through a resistance to the anode of the arc discharge, and the main task of which is to intercept accelerated ions penetrating into the emitter from the high-voltage accelerating gap, due to which the current of electron emission from the arc discharge plasma decreases by a value proportional to the ion current in the accelerating gap. Since most sources and accelerators of electrons with plasma cathodes based on discharges of various types have a similar principle of operation, the use of this method will not only expand the limiting parameters of the generated electron beams, but also increase the stability of the operation of such electron sources, and, accordingly, beam irradiation of various materials and products. Keywords: arc discharge, plasma cathode, electron source, electron beam, ion beam, negative feedback.
  1. V.E. Gromov, Yu.F. Ivanov, S.V. Vorobiev, S.V. Konovalov. Fatigue of Steels Modified by High Intensity Electron Beams (Cambridge, 2015)
  2. V.A. Burdovitsin, A.S. Klimov, A.V. Medovnik, E.M. Oks, Yu.G. Yushkov. Forvacuumnye plazmennye istochniki electronov (Izd-vo Tomskogo un-ta, Tomsk, 2014). (in Russian)
  3. N.N. Koval, V.N. Devyatkov \& M.S. Vorobyev. Russ. Phys. J., 63 1651, (2021). DOI: 10.1007/s11182-021-02219-3
  4. A.B. Belov [et al]. Silnotochnye impulsnye electronnye puchki dlya aviatsionnogo dvigatelestroeniya, ed. by A.S. Novikov, V.A. Shulov, V.I. Engelko (Dipak, M., 2012). (in Russian)
  5. E. Oks. Plasma Cathode Electron Sources: Physics, Technology, Applications (Weinheim : Wiley - VCH, 2006)
  6. N.V. Gavrilov, V.V. Osipov, O.A. Bureev [et al.]. Tech. Phys. Lett., 31 (2), 122 (2005). DOI: 10.1134/1.1877622
  7. M.S. Vorobyov, S.A. Gamermaister, V.N. Devyatkov, N.N. Koval, S.A. Sulakshin, P.M. Shchanin. Tech. Phis. Lett., 40 (12), 506 (2014). DOI:10.1134/S1063785014060261
  8. N.N. Koval, S.V. Grigoryev, V.N. Devyatkov, A.D. Teresov, P.M. Schanin. IEEE Trans. Plasma Sci., 37 (10), 1890 (2009). DOI: 10.1109/tps.2009.2023412
  9. A.V. Zharinov, Yu.A. Kovalenko, I.S. Roganov, P.M. Teryukanov. ZhTF, 56 (1), 66 (1986) (in Russian)
  10. A.V. Zharinov, Yu.A. Kovalenko, I.S. Roganov, P.M. Teryukanov. ZhTF, 56 (4), 687 (1986) (in Russian)
  11. M.S. Vorobyov, P.V. Moskvin, V.I. Shin, N.N. Koval, K.T. Ashurova, S.Yu. Doroshkevich, V.N. Devyatkov, M.S. Torba, V.A. Levanisov. Tech. Phys. Lett.,, 47 (7), 528 (2021). DOI: 10.1134/S1063785021050291
  12. M.S. Vorobyov, N.N. Koval, P.V. Moskvin, A.D. Teresov, S.Yu. Doroshkevich, V.V. Yakovlev, V.I. Shin, J. Phys.: Conf. Ser., 1393, 012064 (2019). DOI: 10.1088/1742-6596/1393/1/012064
  13. M.S. Vorobyov, T.V. Koval, V.I. Shin, P.V. Moskvin, My Kim An Tran, N.N. Koval, K. Ashurova, S.Yu. Doroshkevich, M.S. Torba. IEEE Trans. Plasma Sci., 49 (9), 2550 (2021). DOI: 10.1109/TPS.2021.3089001
  14. S.Yu. Doroshkevich, M.S. Vorobyov, V.V. Yakovlev. IOP Conf. Series, 1115, 022017 (2018). DOI: 10.1088/1742-6596/1115/2/022017
  15. V.I. Gushenets, P.M. Schanin. Russ. Phys. J., 44 (9), 962 (2001). DOI: 10.1023/A:1014362023321
  16. R. Gunzel. Vac. Sci. Technol., 17 (2), 895 (1999)
  17. V.L. Galanskii, Y.E. Kreindel', E.M. Oks [et al.]. High Temperature, 25 (5), 632 (1988)
  18. L.G. Vintizenko, N.V. Gavrilov, N.N. Koval, Yu.E. Kreindel, V.S. Tolkachev, P.M. Shchanin. Impulsnye vysokovoltnye istochniki elektronov s plasmennym emitterom dlya formirovaniya puchkov bolshogo secheniya, v knige Istochniki elektronov s plazmennym emitterom, ed. by Yu.E. Kreindel (Nauka, Novosibirsk, 1983). (in Russian)
  19. S.P. Bugaev, Yu.E. Kreindel, P.M. Shchanin. Elektronnye puchki bolshogo secheniya (Energoatomizdat, M., 1984). (in Russian)
  20. I.Yu. Bakeev, A.V. Kazakov, A.V. Medovnik, E.M. Oks. J. Phys.: Conf. Ser., 1488, 012001 (2020). DOI: 10.1088/1742-6596/1488/1/012001
  21. V.A. Gruzdev, Yu.E. Kreindel, Yu.M. Larin. TVT, 11 (3), 482 (1973). (in Russian)
  22. V.A. Gruzdev, Yu.E. Kreindel, Yu.M. Larin. ZhTF, 43 (11), 2318 (1973). (in Russian)
  23. N.V. Gavrilov, D.R. Emlin, A.S. Kamenetskikh. Tech. Phys., 53 (10), 1308 (2008). DOI: 10.1134/S1063784208100083
  24. T.V. Koval, Le Hu Zung. Izv. vuzov. Fizika. 57 (3-2), 118 (2014). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru