Crystals of the phenazine coordination polymer with the third order symmetry axis: formation, properties
Kompan M.E.1, Malyshkin V.G. 1, Boiko M.E. 1, Sharkov M.D. 1, Sapurina I.Yu. 2, Shishov M.A. 2
1Ioffe Institute, St. Petersburg, Russia
2Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
Email: Kompan@mail.ioffe.ru, mal@gromco.com, boikomix@gmail.com, mischar@mail.ru, sapurina@mail.ru, shv_misha@mail.ru

PDF
Unusual quasi-two-dimensional crystals of a regular triangular shape, self-formed in the process of obtaining a coordination polymer based on phenazine and silver, are described and studied. X-ray diffraction studies were carried out, the interplanar distance was determined, and the spectra of Raman scattering were obtained. A mechanism is proposed that can cause the appearance of triangular crystals from nuclei of hexagonal symmetry. Keywords: X-ray diffractometry, Raman scattering, phenazines - organic crystals.
  1. X. Tan, S. Shahgaldi, X. Li. Adv. Appl. Energy, 4, 100071 (2021). DOI: 10.1016/j.adapen.2021.100071
  2. T.H. Zhang, X.Y. Liu. J. Am. Chem. Soc., 129 (44), 13520 (2007). DOI: 10.1021/ja073598k
  3. Z.Y. Tang, N.A. Kotov, M. Giersig. Science, 297 (5579), 237 (2002). DOI: 10.1126/science.1072086
  4. H. Zheng, R.K. Smith, Y.-W. Jun, C. Kisielowski, U. Dahmen, A.P. Alivisatos. Science, 324 (5932), 1309 (2009). DOI: 10.1126/science.1172104
  5. R.W. Huigens, Y. Abouelhassan, H. Yang. Chem. Bio. Chem., 20 (23), 2885 (2019). DOI: 10.1002/cbic.201900116
  6. A. Biessy, M. Filion. Environ. Microbiol., 20 (11), 3905 (2018). DOI: 10.1111/1462-2920.14395
  7. M. Tran, K. Kline, Y. Qin, Y. Shen, M.D. Green, S. Tongay. Appl. Phys. Rev., 6 (4), 041311 (2019). DOI: 10.1063/1.5110895
  8. L.S. Xie, G. Skorupskii, M. Dinca. Chem. Rev., 120 (16), 8536 (2020). DOI: 10.1021/acs.chemrev.9b00766
  9. W.H. Zachariasen. Theory of X-Ray Diffraction in Crystals (Dover Publications, NYC, 1967)
  10. S. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura. Nature Mater., 4, 163 (2005). DOI: 10.1038/nmat1298
  11. Y. Sun, Y. Xia. Advanced Mater., 15 (9), 695 (2003). DOI: 10.1002/adma.200304652
  12. H. Cai, Y. Gu, Y.-C. Lin, Y. Yu, D.B. Geohegan, K. Xiao. Appl. Phys. Rev., 6 (4), 041312 (2019). DOI: 10.1063/1.5123487
  13. M.D. Eddleston, K.E. Hejczyk, A.M.C. Cassidy, H.P.G. Thompson, G.M. Day, W. Jones. Crystal Growth Design, 15 (5), 2514 (2015). DOI: 10.1021/acs.cgd.5b00295
  14. L. Cartier, T. Okihar, B. Lotz. Macromolecules, 30 (20), 6313 (1997). DOI: 10.1021/ma9707998
  15. Y. Wang, H. Wu, J. Fraser. Stoddart. Acc. Chem. Res., 54 (8), 2027 (2021). DOI: 10.1021/acs.accounts.1c00108
  16. O.S. Avanesyan, V.A. Benderskiy, V.Kh. Brickenshtein, V.L. Broude, A.G. Lavrushko, I.I. Tartakovskiy, P.V. Filippov. Kvant. elektron., 4 (4), 725 (1977) (in Russian)
  17. R.S. Cahn, O.C. Dermer. Introduction to Chemical Nomenclature, 5th Edition (Butterworths, London / Boston, 1979)
  18. W.C. Cornell, Y. Zhang, A. Bendebury, A.J.W. Hartel, K.L. Shepard, L.E.P. Dietrich. Biofilm, 2, 100025 (2020). DOI: 10.1016/j.bioflm.2020.100025
  19. F.A. Kroger, H.J. Vink. Solid State Phys., 3, 307 (1956). DOI:10.1016/S0081-1947(08)60135-6
  20. C. Slabbert, M. Rademeyer. J. Coord. Chem., 70 (4), 676 (2017). DOI: 10.1080/00958972.2016.1263390
  21. N. Judas, K. Habijanec, G. Trajbar. Mol. Cryst. Liq. Cryst., 641 (1), 63 (2016). DOI: 10.1080/15421406.2016.1241339
  22. S. Roy, H.M. Titi, I. Goldberg. Cryst. Eng. Comm., 18 (19), 3372 (2016). DOI: 10.1039/C6CE00518G
  23. Q.-S. Dong, J.-H. Su, S.-D. Gong, Q.-S. Li, Y.-X. Zhao, B. Wu, X.-J. Yang. Organometallics, 32 (9), 2866 (2013). DOI: 10.1021/om400130m
  24. J.-A. Cabeza, P. Garcia-Alvarez, V. Pruneda. Organometallics, 31 (3), 941 (2012). DOI: 10.1021/om200983a
  25. P.J. Steel, C.M. Fitchett. Coord. Chem. Rev., 252 (8-9), 990 (2008). DOI: 10.1016/j.ccr.2007.07.018
  26. S. Kapileswar, R.R. Sudipta, A.K. Chakraborti. Chem. Comm., 52 (5), 922 (2016). DOI: 10.1039/C5CC08640J
  27. S. Beckmann, C. Welte, X. Li, Y.M. Oo, L. Kroeninger, Y. Heo, M. Zhang, D. Ribeiro, M. Lee, M. Bhadbhade, C.E. Marjo, J. Seidel, U. Deppenmeier, M. Manefield. Energy Environ. Sci., 9 (2), 644 (2016). DOI: 10.1039/C5EE03085D
  28. M.E. Boiko, M.D. Sharkov, A.M. Boiko, S.G. Konnikov, A.V. Bobyl, N.S. Budkina. Tech. Phys., 60 (11), 1575 (2015). DOI: 10.1134/S1063784215110067
  29. T. Itaya, M. Ichihara, M. Sugibayashi, L.H. Tai, K. Ohta. Molec. Cryst. Liq. Cryst., 503 (1), 69 (2009). DOI: 10.1080/15421400902841395
  30. ICDD Card \# 01-071-3762
  31. G. Davis, P.J. Thornalley. BBA Bioenergetics, 724 (3), 456 (1983). DOI: 10.1016/0005-2728(83)90106-8
  32. G.L. Bottger, C.V. Damsgard. J. Chem. Phys., 57 (3), 1215 (1972). DOI: 10.1063/1.1678379
  33. C. Zhou, J. Han, G. Song, R. Guo. Macromolecules, 40 (20), 7075 (2007). DOI: 10.1021/ma071400a

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru