Magnetic-pulse deformation of TiNi alloy: experiment and calculation
Ostropiko E. S. 1, Magazinov S. G. 1, Krivosheev S. I. 1
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: es-ostropiko@mail.ru

PDF
Magnetic-pulse loading methods have been known since the 80s of the XX century and, as a rule, are used to determine the laws of destruction of materials under the action of pressure pulses with a duration of several microseconds. A modified scheme of a magnetic-pulse setup for high strain rate uniaxial tension is used in this work. The application of the scheme with the possibility of experimental measurement of the strain accumulation time and strain rate is shown on samples of TiNi alloy. The paper presents the results of finite element modeling and analytical description. Both approaches have demonstrated good agreement between the calculated residual strain and experimental results, even on samples of TiNi alloy with a specific stress-strain diagram. The analytical solution showed good qualitative agreement in assessing the strain accumulation time. On the basis of the analytical solution, an assessment of the capabilities of the magnetic-pulse loading method for uniaxial high strain rate tension is presented. Keywords: magnetic-pulse loading, high strain rate deformation, TiNi alloy
  1. D.I. Alekseev, S. I. Krivosheev, S.G. Magazinov. MATEC Web Conf., 145, 05006, (2018). DOI: 10.1051/matecconf/201814505006
  2. H. Ma, W. Mao, H.l. Su, H. Zhu, X. Cui, L. Huang, J. Li, M. Wu. Int. J. Mech. Sci., 209, 106712 (2021). DOI: 10.1016/j.ijmecsci.2021.106712
  3. A. Gruzdkov, S. Krivosheev, Yu. Petrov, A. Razov, A. Utkin. Mater. Sci. Eng. A, 481--482, 105 (2008). DOI: 10.1016/j.msea.2007.03.113
  4. K.R. Chandar, W.G. Knauss. Int. J. Fract., 20, 209 (1982). DOI: doi.org/10.1007/BF01140336
  5. S.G. Magazinov, S.I. Krivosheev, Yu.E. Adamyan, D.I. Alekseev, V.V. Titkov, L.V. Chernenkaya. Mater. Phys. Mech., 40, 117 (2018). DOI: 10.18720/MPM.4012018_14
  6. S. Atroshenko, V. Morozov, D. Gribanov, A. Lukin, Y. Petrov. EPJ Web Conf., 94, 02014 (2015). DOI: 10.1051/epjconf/20159402014
  7. G.I. Kanel, S.V. Razorenov, V.E. Fortov. Joint 20th AIRAPT --- 43th EHPRG (Karlsruhe, Germany, 2005), 119921
  8. G.I. Kanel, S.V. Razorenov, G.V. Garkushin, A.S. Savinykh. J. Phys. Conf. Ser., 946, 012039 (2018). DOI: 10.1088/1742-6596/946/1/012039
  9. Y. Meshcheryakov, A. Divakov, N. Zhigacheva, G. Konovalov. Proc. Struct. Int., 2, 477 (2016). DOI: 10.1016/j.prostr.2016.06.062
  10. G.G. Savenkov, Yu.I. Meshcheryakov, B.K. Barakhtin, N.V. Lebedeva. J. Appl. Mech. Tech. Phys., 55, 896 (2014). DOI: 10.1134/S0021894414050198
  11. E.S. Ostropiko, S.I. Krivosheev, S.G. Magazinov. Appl. Phys. A, 127, 27 (2021). DOI: 10.1007/s00339-020-04160-7
  12. K. Otsuka, X. Ren. Progr. Mater. Sci., 50, 511 (2005). DOI: 10.1016/j.pmatsci.2004.10.001
  13. V. Grigorieva, A. Danilov, A. Razov. Acta Phys. Pol., 128, 592 (2015). DOI: 10.12693/APhysPolA.128.592
  14. S.-Y. Jiang, Y.-Q. Zhang. Trans. Nonferrous Met. Soc. China., 22 (1), 90 (2012). DOI: 10.1016/S1003-6326(11)61145-X
  15. S.-Y. Jiang, Y.-Q. Zhang, Y.-N. Zhao, M. Tang, W.-L. Yi. J. Cent. South Univ., 20, 24 (2013). DOI: 10.1007/s11771-013-1454-6
  16. A.M. Bragov, L.A. Igumnov, A.Yu. Konstantinov, A.K. Lomunov, A.I. Razov. Adv. Struct. Mater., 103, 133 (2019). DOI: 10.1007/978-3-030-11665-1
  17. Y. Qiu, M.L. Young, X. Nie. Metall. Mater. Trans. A, 46, 4661 (2015). DOI: 10.1007/s11661-015-3063-5
  18. Y. Qiu, M.L. Young, X. Nie. Metall. Mater. Trans. A, 48, 601 (2017). DOI: 10.1007/s11661-016-3857-0
  19. W.W. Chen, Q. Wu, J.H. Kang, N.A. Winfree. Int. J. Solids Struct., 38 (50-51), 8989 (2001). DOI: 10.1016/S0020-7683(01)00165-2
  20. S. Nemat-Nasser, W.-G. Guo. Mech. Mater., 38, 463 (2006). DOI: 10.1016/j.mechmat.2005.07.004
  21. H. Tobushi, Y. Shimeno, T. Hachisuka, K. Tanaka. Mech. Mater., 30 (2), 141 (1998) DOI: 10.1016/S0167-6636(98)00041-6
  22. J. Zurbitu, R. Santamarta, C. Picornell, W.M. Gan, H.-G. Brokmeier, J. Aurrekoetxea. Mat. Sc. Eng. A., 528 (2), 764 (2010). DOI: 10.1016/j.msea.2010.09.094
  23. V.A Likhachev, Yu.I. Patrikeev, in Tezisy dokladov XXIV vsesoyuznogo seminara "Aktual'nye problemy prochnosti," posvyashchennogo mekhanike prochnosti materialov s novymi funktsional'nymi svoistvami (Rubezhnoe, SSSR, 1990), p. 128 (in Russian)
  24. S.P. Belyaev, N.F. Morozov, A.I. Razov, A.E. Volkov, L.L. Wang, S.Q. Shi, S. Gan, J. Chen, X.L. Dong. Mater Sci Forum., 394-395, 337 (2002). DOI: 10.4028/www.scientific.net/MSF.394-395.337
  25. E.S. Ostropiko, A.Y. Konstantinov. Lett. Mater., 11 (2), 223 (2021). DOI: 10.22226/2410-3535-2021-2-223-228
  26. E.S. Ostropiko, A.Y. Konstantinov. Mater. Sci. Technol., 37 (4), 1 (2021). DOI: 10.1080/02670836.2021.1958466
  27. H. Kolsky. Proc. Phys. Soc. London Sect. B., 62 (11), 676 (2002). DOI: 10.1088/0370-1301/62/11/302
  28. T. Nicholas. Exp. Mech., 21 (5), 177 (1981). DOI: 10.1007/BF02326644
  29. H. Knoepfel, Pulsed High Magnetic Fields: Physical Effects and Generation Methods Concerning Pulsed Fields Up to the Megaoersted Level (North-Holland, 1970)
  30. E.S. Ostropiko, S.I. Krivosheev, S.G. Magazinov. Lett. Mater., 11 (1), 55 (2021). DOI: 10.22226/2410-3535-2021-1-55-60
  31. A.M. Bragov, A.N. Danilov, A.Yu. Konstantinov, A.K. Lomunov, A.S. Motorin, A.I. Razov. Phys. Met. Metallogr., 116 (4), 385 (2015). DOI: 10.1134/S0031918X15040031
  32. S.I. Krivosheev. Digest Technical Papers --- IEEE International Pulsed Power Conf., 2, 750 (1999). DOI: 10.1109/PPC.1999.823622

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru