Microwave magnetoresistance effect in a (CoFe/Cu) superlattice with micron-sized holes
Rinkevich A. B.1, Milyaev M. A.1, Kuznetsov E. A.1,2, Perov D. V.1, Pavlova A. Yu.1
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Russian State Vocational Pedagogical University, Yekaterinburg, Russia
Email: rin@imp.uran.ru
The microwave giant magnetoresistance effect in a (CoFe/Cu) superlattice with micron-sized holes has been studied. Measurements of the frequency dependences of the transmission coefficient, as well as the dependences of the microwave transmission and reflection coefficients on the magnetic field, are performed. The measurements were performed on the superlattice samples without holes, having one hole with a diameter of 6.3 μm and seven holes with a diameter of 1.7 μm. It is shown that the presence of a hole with a diameter of 6.3 μm leads to a significant frequency dependence of the microwave giant magnetoresistance effect. Magnetic and magnetoresistance measurements of superlattice samples were performed. Keywords: metal superlattices, ferromagnetic resonance, ferromagnetic antiresonance, microwave giant magnetoresistance effect.
- J.J. Krebs, P. Lubitz, A. Chaiken, G.A. Prinz. J. Appl. Phys., 69 (8), 4795 (1991). DOI: 10.1063/1.348232
- B.K. Kuanr, A.V. Kuanr, P. Grunberg, G. Nimtz. Phys. Lett. A, 221 (3--4), 245 (1996). DOI: 10.1016/0375-9601(96)00567-1
- M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas. Phys. Rev. Lett., 61 (21), 2472 (1988). DOI: 10.1103/PhysRevLett.61.2472
- G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn. Phys. Rev. B, 39 (7), 4828 (1989). DOI: 10.1103/PhysRevB.39.4828
- P. Bruno. Phys. Rev. B, 52 (1), 411 (1995). DOI: 10.1103/PhysRevB.52.411
- V.V. Ustinov, A.B. Rinkevich, L.N. Romashev, V.I. Minin. JMMM, 177--181, 1205 (1998). DOI: 10.1016/S0304-8853(97)00279-5
- E.M. Kogan, E.A. Turov, V.V. Ustinov. Phys. Met. Metallogr., 53 (2), 223 (1982)
- T. Rausch, T. Szczurek, M. Schlesinger. J. Appl. Phys., 85 (1), 314 (1999). DOI: 10.1063/1.369448
- D.P. Belozorov, V.N. Derkach, S.V. Nedukh, A.G. Ravlik, S.T. Roschenko, I.G. Shipkova, S.I. Tarapov, F. Yildiz. Int. J. Infrared Milli. Waves., 22 (11), 1669 (2001). DOI: 10.1023/A:1015060515794
- V.V. Ustinov, A.B. Rinkevich, L.N. Romashev. JMMM, 198--199, 82 (1999). DOI: 10.1016/S0304-8853(98)00631-3
- Z. Frait, P. v Sturc, K. Temst, Y. Bruynseraede, I. Vavra. Solid State Commun., 112 (10), 569 (1999). DOI: 10.1016/S0038-1098(99)00392-0
- V.V. Ustinov, A.B. Rinkevich, L.N. Romashev, E.A. Kuznetsov. Tech. Phys., 54 (8), 1156 (2009). DOI: 10.1134/S1063784209080106
- D.E. Endean, J.N. Heyman, S. Maat, E. Dan Dahlberg. Phys. Rev. B, 84 (21), 212405 (2011). DOI: 10.1103/PhysRevB.84.212405
- A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands. Nat. Phys., 11 (6), 453 (2015). DOI: 10.1038/nphys3347
- B. Divinskiy, V.E. Demidov, S.O. Demokritov, A.B. Rinkevich, S. Urazhdin. Appl. Phys. Lett., 109 (25), 252401 (2016). DOI: 10.1063/1.4972244
- S.A. Nikitov, D.V. Kalyabin, I.V. Lisenkov, A.N. Slavin, Yu.N. Barabanenkov, S.A. Osokin, A.V. Sadovnikov, E.N. Beginin, M.A. Morozova, Yu.P. Sharaevsky, Yu.A. Filimonov, Yu.V. Khivintsev, S.L. Vysotsky, V.K. Sakharov, E.S. Pavlov. Phys. Usp., 58 (10), 1002 (2015). DOI: 10.3367/UFNe.0185.201510m.1099
- A. Fert. Phys. Usp., 51 (12), 1336 (2008). DOI: 10.3367/UFNr.0178.200812f.1336
- M. Farle, T. Silva, G. Woltersdorf. In: Magnetic Nanostructures, Spin Dynamics and Spin Transport, ed. by H. Zabel, M. Farle. (Springer-Verlag, Berlin, Heidelberg, 2013), p. 37. DOI: 10.1007/978-3-642-32042-2
- X. Zhang, W. Butler. In: Handbook of Spintronics, ed. by Y. Xu, D.D. Awschalom, J. Nitta. (Springer, Dordrecht, Heidelberg, NY., London, 2016), p. 3. DOI: 10.1007/978-94-007-6892-5
- Ultrathin Magnetic Structures, ed. by B. Heinrich, J.A.C. Bland. (Springer, Berlin Heidelberg, NY., 2005), v. IV. DOI: 10.1007/b138704
- R.E. Collin. Field Theory of Guided Waves (Wiley-Interscience-IEEE, NY., Chichester, Weinheim, Brisbane, Singapore, Toronto, 1991)
- M. Skorobogatiy. Nanostructured and Subwavelength Waveguides: Fundamentals and Applications (John Wiley \& Sons, Chichester, 2012)
- N. Marinescu. Phys. Rev. E, 56 (2), 2166 (1997). DOI: 10.1103/PhysRevE.56.2166
- N. Marinescu. Phys. Rev. E, 54 (3), 2931 (1996). DOI: 10.1103/PhysRevE.54.2931
- M.G. Silveirinha, N. Engheta. Phys. Rev. Lett., 97 (15), 157403 (2006). DOI: 10.1103/PhysRevLett.97.157403
- S.A. Maier. Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, NY., 2007), DOI: 10.1007/0-387-37825-1
- A.S. Silva, A. Hierro-Rodriguez, S.A. Bunyaev, G.N. Kakazei, O.V. Dobrovolskiy, C. Redondo, R. Morales, H. Crespo, D. Navas. AIP Advances, 9 (3), 035136 (2019). DOI: 10.1063/1.5080111
- V. Lomakin, S. Li, E. Michielssen. Microw. Opt. Technol. Lett., 49 (7), 1554 (2007). DOI: 10.1002/mop.22484
- A. Othonos, K. Kalli. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, 1999)
- Y. Mu, P. Li, Y. Wen. IEEE Sens. J., 21 (20), 22623 (2021). DOI: 10.1109/JSEN.2021.3110870
- W. Kuch, A.C. Marley, S.S.P. Parkin. J. Appl. Phys., 83 (9), 4709 (1998). DOI: 10.1063/1.367259
- M.A. Milyaev, L.I. Naumova, V.V. Ustinov. Phys. Met. Metallogr., 119 (12), 1162 (2018). DOI: 10.1134/S0031918X1812013X
- V.V. Ustinov, A.B. Rinkevich, I.G. Vazhenina, M.A. Milyaev. JETP, 131 (1), 139 (2020). DOI: 10.1134/S1063776120070171
- V.V. Ustinov, A.B. Rinkevich, D.V. Perov, A.M. Burkhanov, M.I. Samoylovich, S.M. Kleshcheva, E.A. Kuznetsov. 58 (4), 568 (2013). DOI: 10.1134/S1063784213040257
- N.A. Semenov. Tekhnicheskaya elektrodinamika (Svyaz', M., 1972) (in Russian)
- L.M. Brekhovskikh. Waves in Layered Media (Academic Press, London, 1980)
- L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.K. Varadan. Microwave Electronics: Measurement and Materials Characterization (John Wiley \& Sons, Hoboken, 2004), DOI: 10.1002/0470020466
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.