Microwave magnetoresistance effect in a (CoFe/Cu) superlattice with micron-sized holes
Rinkevich A. B.1, Milyaev M. A.1, Kuznetsov E. A.1,2, Perov D. V.1, Pavlova A. Yu.1
1M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Russian State Vocational Pedagogical University, Yekaterinburg, Russia
Email: rin@imp.uran.ru

PDF
The microwave giant magnetoresistance effect in a (CoFe/Cu) superlattice with micron-sized holes has been studied. Measurements of the frequency dependences of the transmission coefficient, as well as the dependences of the microwave transmission and reflection coefficients on the magnetic field, are performed. The measurements were performed on the superlattice samples without holes, having one hole with a diameter of 6.3 μm and seven holes with a diameter of 1.7 μm. It is shown that the presence of a hole with a diameter of 6.3 μm leads to a significant frequency dependence of the microwave giant magnetoresistance effect. Magnetic and magnetoresistance measurements of superlattice samples were performed. Keywords: metal superlattices, ferromagnetic resonance, ferromagnetic antiresonance, microwave giant magnetoresistance effect.
  1. J.J. Krebs, P. Lubitz, A. Chaiken, G.A. Prinz. J. Appl. Phys., 69 (8), 4795 (1991). DOI: 10.1063/1.348232
  2. B.K. Kuanr, A.V. Kuanr, P. Grunberg, G. Nimtz. Phys. Lett. A, 221 (3--4), 245 (1996). DOI: 10.1016/0375-9601(96)00567-1
  3. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas. Phys. Rev. Lett., 61 (21), 2472 (1988). DOI: 10.1103/PhysRevLett.61.2472
  4. G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn. Phys. Rev. B, 39 (7), 4828 (1989). DOI: 10.1103/PhysRevB.39.4828
  5. P. Bruno. Phys. Rev. B, 52 (1), 411 (1995). DOI: 10.1103/PhysRevB.52.411
  6. V.V. Ustinov, A.B. Rinkevich, L.N. Romashev, V.I. Minin. JMMM, 177--181, 1205 (1998). DOI: 10.1016/S0304-8853(97)00279-5
  7. E.M. Kogan, E.A. Turov, V.V. Ustinov. Phys. Met. Metallogr., 53 (2), 223 (1982)
  8. T. Rausch, T. Szczurek, M. Schlesinger. J. Appl. Phys., 85 (1), 314 (1999). DOI: 10.1063/1.369448
  9. D.P. Belozorov, V.N. Derkach, S.V. Nedukh, A.G. Ravlik, S.T. Roschenko, I.G. Shipkova, S.I. Tarapov, F. Yildiz. Int. J. Infrared Milli. Waves., 22 (11), 1669 (2001). DOI: 10.1023/A:1015060515794
  10. V.V. Ustinov, A.B. Rinkevich, L.N. Romashev. JMMM, 198--199, 82 (1999). DOI: 10.1016/S0304-8853(98)00631-3
  11. Z. Frait, P. v Sturc, K. Temst, Y. Bruynseraede, I. Vavra. Solid State Commun., 112 (10), 569 (1999). DOI: 10.1016/S0038-1098(99)00392-0
  12. V.V. Ustinov, A.B. Rinkevich, L.N. Romashev, E.A. Kuznetsov. Tech. Phys., 54 (8), 1156 (2009). DOI: 10.1134/S1063784209080106
  13. D.E. Endean, J.N. Heyman, S. Maat, E. Dan Dahlberg. Phys. Rev. B, 84 (21), 212405 (2011). DOI: 10.1103/PhysRevB.84.212405
  14. A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands. Nat. Phys., 11 (6), 453 (2015). DOI: 10.1038/nphys3347
  15. B. Divinskiy, V.E. Demidov, S.O. Demokritov, A.B. Rinkevich, S. Urazhdin. Appl. Phys. Lett., 109 (25), 252401 (2016). DOI: 10.1063/1.4972244
  16. S.A. Nikitov, D.V. Kalyabin, I.V. Lisenkov, A.N. Slavin, Yu.N. Barabanenkov, S.A. Osokin, A.V. Sadovnikov, E.N. Beginin, M.A. Morozova, Yu.P. Sharaevsky, Yu.A. Filimonov, Yu.V. Khivintsev, S.L. Vysotsky, V.K. Sakharov, E.S. Pavlov. Phys. Usp., 58 (10), 1002 (2015). DOI: 10.3367/UFNe.0185.201510m.1099
  17. A. Fert. Phys. Usp., 51 (12), 1336 (2008). DOI: 10.3367/UFNr.0178.200812f.1336
  18. M. Farle, T. Silva, G. Woltersdorf. In: Magnetic Nanostructures, Spin Dynamics and Spin Transport, ed. by H. Zabel, M. Farle. (Springer-Verlag, Berlin, Heidelberg, 2013), p. 37. DOI: 10.1007/978-3-642-32042-2
  19. X. Zhang, W. Butler. In: Handbook of Spintronics, ed. by Y. Xu, D.D. Awschalom, J. Nitta. (Springer, Dordrecht, Heidelberg, NY., London, 2016), p. 3. DOI: 10.1007/978-94-007-6892-5
  20. Ultrathin Magnetic Structures, ed. by B. Heinrich, J.A.C. Bland. (Springer, Berlin Heidelberg, NY., 2005), v. IV. DOI: 10.1007/b138704
  21. R.E. Collin. Field Theory of Guided Waves (Wiley-Interscience-IEEE, NY., Chichester, Weinheim, Brisbane, Singapore, Toronto, 1991)
  22. M. Skorobogatiy. Nanostructured and Subwavelength Waveguides: Fundamentals and Applications (John Wiley \& Sons, Chichester, 2012)
  23. N. Marinescu. Phys. Rev. E, 56 (2), 2166 (1997). DOI: 10.1103/PhysRevE.56.2166
  24. N. Marinescu. Phys. Rev. E, 54 (3), 2931 (1996). DOI: 10.1103/PhysRevE.54.2931
  25. M.G. Silveirinha, N. Engheta. Phys. Rev. Lett., 97 (15), 157403 (2006). DOI: 10.1103/PhysRevLett.97.157403
  26. S.A. Maier. Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, NY., 2007), DOI: 10.1007/0-387-37825-1
  27. A.S. Silva, A. Hierro-Rodriguez, S.A. Bunyaev, G.N. Kakazei, O.V. Dobrovolskiy, C. Redondo, R. Morales, H. Crespo, D. Navas. AIP Advances, 9 (3), 035136 (2019). DOI: 10.1063/1.5080111
  28. V. Lomakin, S. Li, E. Michielssen. Microw. Opt. Technol. Lett., 49 (7), 1554 (2007). DOI: 10.1002/mop.22484
  29. A. Othonos, K. Kalli. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Norwood, 1999)
  30. Y. Mu, P. Li, Y. Wen. IEEE Sens. J., 21 (20), 22623 (2021). DOI: 10.1109/JSEN.2021.3110870
  31. W. Kuch, A.C. Marley, S.S.P. Parkin. J. Appl. Phys., 83 (9), 4709 (1998). DOI: 10.1063/1.367259
  32. M.A. Milyaev, L.I. Naumova, V.V. Ustinov. Phys. Met. Metallogr., 119 (12), 1162 (2018). DOI: 10.1134/S0031918X1812013X
  33. V.V. Ustinov, A.B. Rinkevich, I.G. Vazhenina, M.A. Milyaev. JETP, 131 (1), 139 (2020). DOI: 10.1134/S1063776120070171
  34. V.V. Ustinov, A.B. Rinkevich, D.V. Perov, A.M. Burkhanov, M.I. Samoylovich, S.M. Kleshcheva, E.A. Kuznetsov. 58 (4), 568 (2013). DOI: 10.1134/S1063784213040257
  35. N.A. Semenov. Tekhnicheskaya elektrodinamika (Svyaz', M., 1972) (in Russian)
  36. L.M. Brekhovskikh. Waves in Layered Media (Academic Press, London, 1980)
  37. L.F. Chen, C.K. Ong, C.P. Neo, V.V. Varadan, V.K. Varadan. Microwave Electronics: Measurement and Materials Characterization (John Wiley \& Sons, Hoboken, 2004), DOI: 10.1002/0470020466

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru