The thermal image receiver realized in the Image intensifier tube architecture
Grevcev A. S.1, Zolotukhin P. A.1, Il'ichev E. A.1, Petruhin G. N.1, Popov A. V. 1, Rychkov G. S. 1
1 National Research University of Electronic Technology - MIET, Zelenograd, Moscow, Russia
Email: den.lorndern@gmail.com, pasher2086@yandex.ru, edil44@mail.ru, georg.petruhin@gmail.com, mstlena2@mail.ru

PDF
An innovative design of thermal imaging is considered. The results of analysis and calculations of the characteristics of a thermal image receiver (3-15 μm), made in the electron-optical converter architecture, are presented. The spatial dependences of the spontaneous polarization the electric field strengths and the electric potentials on the surface of pyroelectric film are calculated. The characteristics of thermal-field-induced polarization of various pyroelectric films are obtained. The temperature dependences of various pyroelectric films polarizations are calculated by the COMSOL Multiphysics software package based on the finite element method. The possible influences of the piezoelectric effect to the images of the distribution of electric potentials of pyroelectric films are taken into account. The estimates of the values of the main characteristics of the image intensifier tube architecture are obtained. Keywords: the image intensifier tube, spontaneous polarization, pyroelectric, bolometric thermal imagers, pyroelectric thermal imagers.
  1. C. Jelen, S.B. Slivken, T. David, G. Brown, M. Razeghi. In: Photodetectors: Materials and Devices III, ed. by G.J. Brown (San Jose, Proc. SPIE, 1998), v. 3287, p. 96--104. DOI: 10.1117/12.304470
  2. O.O. Cellek, S. Ozer, C. Besikci. IEEE J. Quant. Electron., 41 (7), 980 (2005). DOI: 10.1109/JQE.2005.848947
  3. S.U. Eker, Y. Arslan, C. Besikci. Infrared Phys. Technol., 54 (2), 209 (2011). DOI: 10.1016/j.infrared.2010.12.015
  4. L.T. Chee, M. Hooman. Nanophotonics, 7 (1), 1 (2017). DOI: 10.1515/nanoph-2017-0061
  5. V.V. Korotaev, G.S. Mel'nikov, S.V. Mikheev, V.M. Samkov, Yu.I. Soldatov. Osnovy teplovideniya (St. Petersburg: NIU ITMO, St. Petersburg, 2012), p. 122 (in Russian)
  6. J.E. Huffman, A.G. Crouse, B.L. Halleck, T.V. Downes. J. Appl. Phys., 72 (1), 273 (1998). DOI: 10.1063/1.352127
  7. N. Sclar. In: Infrared Detectors, ed. by W.L. Wolfe (San-Diego, Proc. SPIE, 1983), v. 0443, p. 11--41. DOI: 10.1117/12.937937
  8. S.M. Birkmann, J. Stegmaier, U. Grozinger, O. Krause. In: High Energy, Optical, and Infrared Detectors for Astronomy III, ed. by D.A. Dorn, A.D. Holland (Marceille, Proc, SPIE, 2008), v. 7021, p. 70210R. DOI: 10.1117/12.789103
  9. S.I. Woods, J.E. Proctor, T.M. Jung, A.C. Carter, J. Neira, D.R. Defibaugh. Appl. Opt., 57 (18), D82 (2018). DOI: 10.1364/AO.57.000D82
  10. A. Rogalski. Infrared Phys. Technol., 43 (3--5), 187 (2002). DOI: 10.1016/S1350-4495(02)00140-8
  11. G. Eppeldauer, M. Racz. Appl. Opt., 39 (31), 5739 (2000). DOI: 10.1364/AO.39.005739
  12. H. Yuan, G. Apgar, J. Kim, J. Laquindanum, V. Nalavade. Infrared Technology and Applications XXXIV, ed. by B.F. Andersen, G.F. Fulop, P.R. Norton (Orlando, Proc. SPIE, 2008), v. 6940, p. 69403C. DOI: 10.1117/12.782735
  13. A. Rogalski. Infrared Phys. Technol., 54 (5), 126 (2011). DOI: 10.1016/j.infrared.2010.12.003
  14. I.E. Carranza, J. Grant, J. Gough, R.S. David. IEEE Trans. Terahertz Sci. Technol., 5 (6), 892 (2015). DOI: 10.1109/TTHZ.2015.2463673
  15. Y.-Z. Deng, S.-F. Tang, H.-Y. Zeng, Z.-Y. Wu, D.-K. Tung. Sensors (Basel), 18 (2593), 1 (2018). DOI: 10.3390/s18082593
  16. M.F. Rashman, I.A. Steele, S.D. Bates, D. Copley, S.N. Longmore. Monthly Notices Royal Astronom. Society, 492 (1), 480 (2020). DOI: 10.1093/mnras/stz3497
  17. C. Vedel, J.-L. Martin, J.-L. Ouvrier Buffet. In: Infrared Technology and Applications XXV, ed. by B.F. Andersen, M. Strojnik (Orlando, Proc. SPIE, 1999), v. 3698, p. 276--283. DOI: 10.1117/12.354529
  18. T. Schimert, D. Ratcliff, J. Brady, S. Ropson, R. Gooch, B. Ritchey, P. McCardel, K. Rachels, M. Wand, M. Weinstein, J. Wyim. In: Unattended Ground Sensor Technologies and Applications, ed. by E.M. Carapezza, D.B. Law, K.T. Stalker (Orlando, Proc. SPIE, 1999), v. 3713, p. 101--111. DOI: 10.1117/12.357125
  19. S. Estill, M.R. Brozel. MRS Online Proceed. Library, 299, 27 (1994). DOI: 10.1557/PROC-299-27
  20. C. Hoffman, R. Driggers. Encyclopedia of Optical and Photonic Engineering (Print) --- Five Volume Set (CRC Press, Florida, 2015), p. 4088. ISBN: 9781439850978
  21. F.J. Low. J. Optical Society America, 51 (11), 1300 (1961). DOI: 10.1364/JOSA.51.001300
  22. M.A. Tarasov, L.S. Kuzmin, V.S. Edelman, N.S. Kaurova, M.Yu. Fominskii, A.B. Ermakov. JETP Lett., 92, 416 (2010). DOI: 10.1134/S0021364010180116
  23. A. Rogalski. Infrared Detectors: 2nd ed. (CRC Press, Florida, 2020), p. 898. ISBN: 9780367577094
  24. S.K. Holland, R.H. Krauss, G. Laufer. Optical Engineer., 43 (10), 2303 (2004). DOI: 10.1117/1.1782612
  25. C.B. Roundy, R.L. Byer. J. Appl. Phys., 44 (2), 929 (1973). DOI: 10.1063/1.1662294
  26. M.C. Kao, H.Z. Chen, S.L. Yang, Y.C. Chen, P.T. Hsieh, C.C. Yu. Thin. Solid Films, 516 (16), 5518 (2008). DOI: 10.1016/j.tsf.2007.07.020
  27. C. Giebeler, J. Wright, S. Freeborn, N. Conway, T. Chamberlain, P. Clark, M. Schreiter, D. Pitzer, R. Koehle. SENSOR + TEST Conference 2009 (Nurnberg, AMA Service GmbH, 2009), p. 185--189. DOI: 10.5162/irs09/i1.1
  28. C.M. Dudhe, S.B. Nagdeote, C. P. Chaudhari. Taylor \& Francis, Ferroelectrics, 482, 104 (2015). DOI: 10.1080/00150193.2015.1057080
  29. W.R. Cook, jr. Piezoelectric, Pyroelectric, and Related Constants (Springer-Verlag, Berlin, Heidelberg, Berlin, 1994), p. 543. ISBN: 978-3-540-55065-5
  30. S.T. Liu, R.B. Maciolek. J. Electron. Mater., 4 (1), 91 (1975). DOI: 10.1007/BF02657838
  31. H.V. Alexandru, C. Berbecaru, F. Stanculescu, L. Pintilie, I. Matei, M. Lisca. Sensors Actuators A: Phys., 113 (3), 387 (2004). DOI: 10.1016/j.sna.2004.03.046
  32. W.A. Tiller. The Science of Crystallization Macroscopic Phenomena and Defect Generation (Cambridge University Press, California, 1992), p. 520. ISBN: 9780521388283
  33. S. Yarlagadda, H.W. Chan, H. Lee. J. Intelligent Mater. Systems Structures, 6 (6), 757 (1995). DOI: 10.1177/1045389X9500600603
  34. J. Ouyang. Enhanced Piezoelectric Performance of Printed PZT Films on Low Temperature Substrates (Rochester, Rochester Institute of Technology, 2017)
  35. T.A. Germer, J.C. Zwinkels, B.K. Tsai. Spectrophotometry: Accurate Measurement of Optical Properties of Materials (Amsterdam, Academic Press, 2014), v. 46, p. 533. ISBN: 9780123860224
  36. W.R. Cook, jr. Piezoelectric, Pyroelectric, and Related Constants (Springer-Verlag, Berlin, Heidelberg, Berlin, 1994), p. 543. ISBN: 978-3-540-55065-5
  37. L. Zhang, R. Barrett, P. Cloetens, C. Detlefs, M. Sanchez del Rio. J. Synchrotron Rad., 21, 507 (2014). DOI: 10.1107/S1600577514004962
  38. Y. Wu, G. Caoa. J. Mater. Res., 15 (7), 1583 (2000). DOI: 10.1557/JMR.2000.0227
  39. M. Vollmer, K.-P. Mollmann. Infrared Thermal Imaging Fundamentals, Research and Applications (Wiley-VCH, 2018), p. 794. ISBN: 978-3-527-41351-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru