Physics of the Solid State
Volumes and Issues
The effect of line-by-line laser scanning on the properties of laser-induced graphene
Mikheev K. G. 1, Zonov R. G. 1, Syugaev A. V. 1, Bulatov D. L.1, Mikheev G. M. 1
1Udmurt Federal Research Center, Ural Branch Russian Academy of Sciences, Izhevsk, Russia
Email: k.mikheev@udman.ru, znv@udman.ru, syual@udman.ru, dlbulatov@udman.ru, mikheev@udman.ru

PDF
Technology of polyimide (PI) film carbonization by direct laser treatment attracts much attention due to the versatility and ease of obtaining the carbon material, laser-induced graphene (LIG), used in the creation of various sensors and functional devices. In this work LIG film structures are obtained by line-by-line scanning of a cw CO2 laser beam over the surface of the PI film. The synthesized carbon film material is studied by optical and scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. It is shown that the Raman spectra of a single LIG line and a set of overlapping LIG lines significantly differ from each other. It is found that multiple laser scanning of the PI film leads to a marked decrease in the number of defects in the LIG structure as well as to a significant decrease in the specific surface resistance of the synthesized film material. The results obtained can be used in the synthesis of LIG film structures with improved characteristics. Keywords: laser-induced graphene, polyimide film, line-by-line laser scanning.
  1. Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak, L. Zhu, M. Wang, J. Tu, A. Kogan, H. Zhang, T.K. Hsiai, Z. Li, W. Gao. Nat. Biotechnol. 38, 217 (2020)
  2. B. Wang, A. Facchetti. Adv. Mater. 31, 1 (2019)
  3. N. Kurra, Q. Jiang, P. Nayak, H.N. Alshareef. Nano Today 24, 81 (2019)
  4. C. Wang, C. Wang, Z. Huang, S. Xu. Adv. Mater. 30, 1 (2018)
  5. C. Zhang, Z. Peng, C. Huang, B. Zhang, C. Xing, H. Chen, H. Cheng, J. Wang, S. Tang. Nano Energy 81, 105609 (2021)
  6. V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner. Adv. Mater. 30, 1 (2018)
  7. J. Ye, H. Tan, S. Wu, K. Ni, F. Pan, J. Liu, Z. Tao, Y. Qu, H. Ji, P. Simon, Y. Zhu. Adv. Mater. 30, 1801384 (2018)
  8. Y. Zhang, L. Zhang, K. Cui, S. Ge, X. Cheng, M. Yan, J. Yu, H. Liu. Adv. Mater. 30, 1 (2018)
  9. Z. Wei, D. Wang, S. Kim, S.-Y. Kim, Y. Hu, M.K. Yakes, A.R. Laracuente, Z. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.E. Sheehan, E. Riedo. Science 328, 1373 (2010)
  10. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff. Carbon N. Y. 45, 1558 (2007)
  11. D.A. Sokolov, K.R. Shepperd, T.M. Orlando. J. Phys. Chem. Lett. 1, 2633 (2010)
  12. R. You, Y. Liu, Y. Hao, D. Han, Y. Zhang, Z. You. Adv. Mater. 32, 1901981 (2020)
  13. Z. Wan, E.W. Streed, M. Lobino, S. Wang, R.T. Sang, I.S. Cole, D.V. Thiel, Q. Li. Adv. Mater. Technol. 3, 1 (2018)
  14. R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han, C. Kittrell, J.M. Tour. Adv. Mater. 29, 1702211 (2017)
  15. R. Ye, D.K. James, J.M. Tour. Adv. Mater. 31, 1803621 (2019)
  16. D. Zhai, Y. Yang, Z. Geng, B. Cui, R. Zhao. IEEE Trans. Terahertz Sci. Technol. 8, 719 (2018)
  17. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E.L.G.G. Samuel, M.J. Yacaman, B.I. Yakobson, J.M. Tour. Nature Commun. 5, 5714 (2014)
  18. Y. Ding, Z. Cheng, X. Zhu, K. Yvind, J. Dong, M. Galili, H. Hu, N.A. Mortensen, S. Xiao, L.K. Oxenl we. Nanophotonics 9, 317 (2020)
  19. P. Zaccagnini, D. di Giovanni, M.G. Gomez, S. Passerini, A. Varzi, A. Lamberti. Electrochim. Acta 357, 136838 (2020)
  20. Y. Wang, G. Wang, M. He, F. Liu, M. Han, T. Tang, S. Luo. Small 2103322, 1 (2021)
  21. L. Huang, L. Ling, J. Su, Y. Song, Z. Wang, B.Z. Tang, P. Westerhoff, R. Ye. ACS Appl. Mater. Interfaces 12, 51864 (2020)
  22. L. Cheng, W. Guo, X. Cao, Y. Dou, L. Huang, Y. Song, J. Su, Z. Zeng, R. Ye. Mater. Chem. Front. (2021)
  23. H. Wang, Z. Zhao, P. Liu, X. Guo. Biosensors 12, 55 (2022)
  24. S. Kaur, S. Karmakar, K.M. Devi, R.K. Varshney, D.R. Chowdhury. Optik 248, 168073 (2021)
  25. M.K. Smith, D.X. Luong, T.L. Bougher, K. Kalaitzidou, J.M. Tour, B.A. Cola. Appl. Phys. Lett. 109, 253107 (2016)
  26. X. Yu, N. Li, S. Zhang, C. Liu, L. Chen, S. Han, Y. Song, M. Han, Z. Wang. J. Power Sources 478, 229075 (2020)
  27. M.G. Stanford, C. Zhang, J.D. Fowlkes, A. Hoffman, I.N. Ivanov, P.D. Rack, J.M. Tour, A. Ho, I.N. Ivanov, P.D. Rack, J.M. Tour. ACS Appl. Mater. Interfaces 12, 10902 (2020)
  28. L.X. Duy, Z. Peng, Y. Li, J. Zhang, Y. Ji, J.M. Tour. Carbon N. Y. 126, 472 (2018)
  29. K.G. Mikheev, R.G. Zonov, D.L. Bulatov, A.E. Fateev, G.M. Mikheev. Tech. Phys. Lett. 46, 5 (2020)
  30. K.G. Mikheev, R.G. Zonov, T.N. Mogileva, A.E. Fateev, G.M. Mikheev. Opt. Laser Technol. 141, 107143 (2021)
  31. E.L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructures. Springer (2004)
  32. G.M. Mikheev, A.S. Saushin, V.V. Vanyukov, K.G. Mikheev, Y.P. Svirko. Nanoscale Res. Lett. 12, 39 (2017)
  33. K.G. Mikheev, A.S. Saushin, R.G. Zonov, A.G. Nasibulin, G.M. Mikheev. J. Nanophotonics 10, 012505 (2015)
  34. G.M. Mikheev, R.G. Zonov, A.Yu. Popov, D.G. Kalyuzhny. Pribory i tekhnika eksperimenta, 46, 3, 164 (2003) (in Russian)
  35. E. Haque, M.M. Islam, E. Pourazadi, M. Hassan, S.N. Faisal, A.K. Roy, K. Konstantinov, A.T. Harris, A.I. Minett, V.G. Gomes. RSC Adv. 5, 30679 (2015)
  36. E.R. Mamleyev, S. Heissler, A. Nefedov, P.G. Weidler, N. Nordin, V.V. Kudryashov, K. Lange, N. MacKinnon, S. Sharma. Npj Flex. Electron. 3, 2 (2019)
  37. Z. Wan, M. Umer, M. Lobino, D. Thiel, N.T. Nguyen, A. Trinchi, M.J.A. Shiddiky, Y. Gao, Q. Li. Carbon N.Y. 163, 385 (2020)
  38. X.J. Gu. Appl. Phys. Lett. 62, 1568 (1993)
  39. D.W. Mayo, F.A. Miller, R.W. Hannah. Course Notes on the Interpretation of Infrared and Raman Spectra. John Wiley \& Sons, Inc., Hoboken, NJ, USA (2004)
  40. S. Devasahayam, D.J.T. Hill, J.W. Connell. J. Appl. Polym. Sci. 101, 1575 (2006)
  41. G. Socrates. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd ed. Wiley (2004)
  42. A. Lamberti, M. Serrapede, G. Ferraro, M. Fontana, F. Perrucci, S. Bianco, A. Chiolerio, S. Bocchini. 2D Mater. 4, 035012 (2017)
  43. P. Zaccagnini, C. Ballin, M. Fontana, M. Parmeggiani, S. Bianco, S. Stassi, A. Pedico, S. Ferrero, A. Lamberti. Adv. Mater. Interfaces 8, 2101046 (2021)
  44. A.C. Ferrari. Solid State Commun. 143, 47 (2007)
  45. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus. Phys. Rep. 473, 51 (2009)
  46. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim. Phys. Rev. Lett. 97, 1 (2006)
  47. Z. Zafar, Z.H. Ni, X. Wu, Z.X. Shi, H.Y. Nan, J. Bai, L.T. Sun. Carbon N. Y. 61, 57 (2013)
  48. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi. Nano Lett. 12, 3925 (2012)
  49. X. Wang, Y. Cui, Y. Tao, H. Yang, J. Zhao. J. Electron. Mater. 10, (2020)
  50. R. Ye, D.K. James, J.M. Tour. Acc. Chem. Res. 51, 1609 (2018).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru