Graphene/nanotube quasi-1D structures in strong electric fields
Glukhova O. E. 1, Slepchenkov M. M. 1
1Saratov State University, Saratov, Russia
Email: glukhovaoe@info.sgu.ru

PDF
In silico studies of the behavior of graphene/nanotube quasi-one-dimensional (1D) structures with covalent bonded graphene and nanotube in strong electric fields with a strength of 10^7-108 V/cm have been carried out. The atomic structure, band structure, electron transmission function, electrical conductivity, and regularity of the electronic structure changes in strong fields have been studied. It is found that the electron transmission function of quasi-1D structures has an intensity peak at the Fermi level in contrast to nanotubes and graphene. As a result of quantum molecular dynamics modeling, the regularities of deformation of the atomic framework and its destruction under the action of ponderomotive force have been established. We have found a critical value of the strength at which the electric field detaches the graphene from the tube. It is ~2·108 V/cm. A further increase leads to the detachment of graphene from the tube with its simultaneous destruction. Keywords: graphene/nanotube structures, electrical conductivity, ponderomotive force, strong electric fields.
  1. A.K. Geim, K.S. Novoselov. Nature Mater. 6, 183 (2007)
  2. V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril. Chem. Rev. 115, 11, 4744 (2015)
  3. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart. Science 339, 6119, 535 (2013)
  4. V.T. Dang, D.C. Nguyen, T.T. Cao, P.H. Le, D.L. Tran, N.M. Phan, V.C. Nguyen. Adv. Nat. Sci.: Nanosci. Nanotechnol. 7, 3, 033002 (2016)
  5. Y. Li, Q. Ai, L. Mao, J. Guo, T. Gong, Y. Lin, G. Wu, W. Huang, X. Zhang. Sci. Rep. 11, 21006 (2021)
  6. R. Ghosh, T. Maruyama, H. Kondo, K. Kimoto, T. Nagai, S. Iijima. Chem. Commun. 51, 43, 8974 (2015)
  7. E. Shi, H. Li, L. Yang, J. Hou, Y. Li, L. Li, A. Cao, Y. Fang. Adv. Mater. 27, 4, 682 (2015)
  8. L.A. Chernozatonsky, P.B. Sorokin, A.A. Artyukh. Uspekhi khimii 83, 3, 251 (2014) (in Russian)
  9. A.L. Gorkina, A.P. Tsapenko, E.P. Gilshteyn, T.S. Koltsova, T.V. Larionova, A. Talyzin, A.S. Anisimov, I.V. Anoshkin, E.I. Kauppinen, O.V. Tolochko, A.G. Nasibulin. Carbon 100, 501 (2016)
  10. W. Du, Z. Ahmed, Q. Wang, C. Yu, Z. Feng, G. Li, M. Zhang, C. Zhou, R. Senegor, C.Y. Yang. 2D Mater. 6, 4, 042005 (2019)
  11. G.K. Dimitrakakis, E. Tylianakis, G.E. Froudakis. Nano Lett. 8, 10, 3166 (2008)
  12. W. Wang, M. Ozkan, C.S. Ozkan. J. Mater. Chem. A 4, 9, 3356 (2016)
  13. M.Q. Zhao, X.F. Liu, Q. Zhang, G.L. Tian, J.Q. Huang, W. Zhu, F. Wei. ACS Nano 6, 12, 10759 (2012)
  14. Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.R.O. Raji, C. Kittrell, R.H. Hauge, J.M. Tour. Nature Commun. 3, 1225 (2012)
  15. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A.K. Roy. Chem. Mater. 23, 21, 4810 (2011)
  16. A. Hassani, M.T.H. Mosavian, A. Ahmadpour, N. Farhadian. J. Chem. Phys. 142, 23, 234704 (2015)
  17. I.N. Kholmanov, C.W. Magnuson, R. Piner, J.Y. Kim, A.E. Aliev, C. Tan, T.Y. Kim, A.A. Zakhidov, G. Sberveglieri, R.H. Baughman, R.S. Ruoff. Adv. Mater. 27, 19, 3053 (2015)
  18. F. Tristan-Lopez, A. Morelos-Gomez, S.M. Vega-Di az, M.L. Garci a-Betancourt, N. Perea-Lopez, A.L. Eli as, H. Muramatsu, R. Cruz-Silva, S. Tsuruoka, Y.A. Kim, T. Hayahsi, K. Kaneko, M. Endo, M. Terrones. ACS Nano 7, 12, 10788 (2013)
  19. S.H. Kim, W. Song, M.W. Jung, M.A. Kang, K. Kim, S.J. Chang, S.S. Lee, J. Lim, J. Hwang, S. Myung, K.S. An. Adv. Mater. 26, 25, 4247 (2014)
  20. X. Gan, R. Lv, J. Bai, Z. Zhang, J. Wei, Z.H. Huang, H. Zhu, F. Kang, M. Terrones. 2D Mater. 2, 3, 034003 (2015)
  21. Z. Yan, Z. Peng, G. Casillas, J. Lin, C. Xiang, H. Zhou, Y. Yang, G. Ruan, A.R. Raji, E.L. Samuel, R.H. Hauge, M.J. Yacaman, J.M. Tour. ACS Nano 8, 5, 5061 (2014)
  22. Z. Chen, T. Lv, Y. Yao, H. Li, N. Li, Y. Yang, K. Liu, G. Qian, X. Wang, T. Chen. J. Mater. Chem. A 7, 43, 24792 (2019)
  23. X. Yang, D. Yu, B. Cao, A.C. To. ACS Appl. Mater. Interfaces 9, 1, 29 (2017)
  24. K. Duan, L. Li, Y. Hu, X. Wang. Sci. Rep. 7, 14012 (2017)
  25. A. Pedrielli, S. Taioli, G. Garberoglio, N.M. Pugno. Micropor. Mesopor. Mater. 257, 222 (2018)
  26. J. Chen, J.H. Walther, P. Koumoutsakos. Nanotechnology 27, 465705 (2016)
  27. Y. Liu, Y. Liu, S. Qin, Y. Xu, R. Zhang, F. Wang. Nano Res. 10, 6, 1880 (2016)
  28. B. Cai, H. Yin, T. Huo, J. Ma, Z. Di, M. Li, N. Hu, Z. Yang, Y. Zhang, Y. Su. J. Mater. Chem. C 8, 10, 3386 (2020)
  29. B. Liu, M. Alamri, M. Walsh, J.L. Doolin, C.L. Berrie, J.Z. Wu. ACS Appl. Mater. Interfaces 12, 47, 53115 (2020)
  30. H. Kim, J. Kim, H.S. Jeong, H. Kim, H. Lee, J.M. Ha, S.M. Choi, T.H. Kim, Y.C. Nah, T.J. Shin, J. Bang, S.K. Satijag, J. Koo. Chem. Commun. 54, 41, 5229 (2018)
  31. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinyaa, L.-C. Qinc. Phys. Chem. Chem. Phys. 13, 39, 17615 (2011)
  32. R.T. Lv, E. Cruz-Silva, M. Terrones. ACS Nano 2014, 8, 5, 4061
  33. X.L. Li, J.W. Sha, S.K. Lee, Y.L. Li, Y.S. Ji, Y.J. Zhao, J.M. Tour. ACS Nano 10, 8, 7307 (2016).
  34. L. Cai, X. Xue, M. Liu, H. Li, X. Zhou, G. Yu. APL Materials 9, 4, 041110 (2021)
  35. E.F. Sheka, L.A. Chernozatonsky, A.A. Artyukh. Pis'ma v ZhETF 89, 7, 412 (2009) (in Russian)
  36. L.A. Chernozatonskii, P.B. Sorokin. ECS Trans. 19, 13, 35 (2009)
  37. E.F. Sheka, L.A. Chernozatonskii. J. Comput. Theor. Nanosci. 7, 9, 1814 (2010)
  38. A.A. Artyukh, L.A. Chernozatonskii, P.B. Sorokin. Phys. Status Solidi B 247, 11-12, 2927 (2010)
  39. V.V. Ivanovskaya, A. Zobelli, P. Wagner, M.I. Heggie, P.R. Briddon, M.J. Rayson, C.P. Ewels. Phys. Rev. Lett. 107, 6, 065502 (2011)
  40. M.A. Akhukov, S. Yuan, A. Fasolino, M.I. Katsnelson. New J. Phys. 14, 123012 (2012)
  41. O.E. Glukhova, I.S. Nefedov, A.S. Shalin, M.M. Slepchenkov. Beilstein J. Nanotechnol. 9, 1321 (2018)
  42. J. Gonga, P. Yang. RSC Adv. 4, 38, 19622 (2014)
  43. T. Matsumoto, S. Saito. J. Phys. Soc. Jpn. 71, 2765 (2002)
  44. Y. Mao, J. Zhong. New J. Phys. 11, 093002 (2009)
  45. F.D. Novaes, R. Rurali, P. Ordejon. ACS Nano 4, 12, 7596 (2010)
  46. J. Chen, J.H. Walther, P. Koumoutsakos Adv. Funct. Mater. 25, 7539 (2015)
  47. V. Varshney, S.S. Patnaik, A.K. Roy, G. Froudakis, B.L. Farmer. ACS Nano 4, 2, 1153 (2010)
  48. Z. Zhang, A. Kutana, A. Roy, B.I. Yakobson. J. Phys. Chem. C 121, 2, 1257 (2017)
  49. D.D. Nguyen, R.N. Tiwari, Y. Matsuoka, G. Hashimoto, E. Rokuta, Y. Chen, Y.L. Chueh, M. Yoshimura. ACS Appl. Mater. Interfaces 6, 12, 9071 (2014)
  50. M. Song, P. Xu, Y. Song, X. Wang, Z. Li, X. Shang, H. Wu, P. Zhao, M. Wang. AIP Adv. 5, 9, 097130 (2015)
  51. S. Riyajuddin, S. Kumar, K. Soni, S.P. Gaur, D. Badhwar, K. Ghosh. Nanotechnology 30, 38, 385702 (2019)
  52. A.T.T. Koh, T. Chen, L. Pan, Z. Sun, D.H.C. Chua. J. Appl. Phys. 113, 17, 174909 (2013)
  53. L. Chen, H. He, H. Yu, Y. Cao, D. Lei, Q. Menggen, C. Wu, L. Hu. J. Alloys Compd. 610, 659 (2014)
  54. X. Hong, W. Shi, H. Zheng, D. Liang. Vacuum 169, 108917 (2019)
  55. A.Y. Gerasimenko, A.V. Kuksin, Y.P. Shaman, E.P. Kitsyuk, Y.O. Fedorova, A.V. Sysa, A.A. Pavlov, O.E. Glukhova. Nanomaterials 11, 8, 1875 (2021)
  56. B. Hourahine, B. Aradi, V. Blum, F. Bonafe, A. Buccheri, C. Camacho, C. Cevallos, M.Y. Deshaye, T. Dumitricv a, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J.J. Kranz, C. Kohler, T. Kowalczyk, T. Kubav r, I.S. Lee, V. Lutsker, R.J. Maurer, S.K. Min, I. Mitchell, C. Negre, T.A. Niehaus, A.M.N. Niklasson, A.J. Page, A. Pecchia, G. Penazzi, M.P. Persson, J. v Rezav c, C.G. Sanchez, M. Sternberg, M. Stohr, F. Stuckenberg, A. Tkatchenko, V.W.Z. Yu, T. Frauenheim. J. Chem. Phys. 152, 12, 124101 (2020)
  57. H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 12, 5188 (1976)
  58. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff. J. Am. Chem. Soc. 114, 25, 10024 (1992)
  59. S. Datta. Quantum Transport: Atom to Transistor. Cambridge University Press, N. Y. (2005). 432 p
  60. B. Aradi, A.M.N. Niklasson, T. Frauenheim. J. Chem. Theory Comput. 11, 7, 3357 (2015)
  61. R. Car, M. Parrinello. Phys. Rev. Lett. 55, 22, 2471 (1985).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru