Electronic, dielectric properties and charge transfer in a TlGaS2 : Nd3+ single crystal at direct and alternating current
Mustafaeva S.N.1,2,3, Asadov M.M.1,2,3, Guseinova S.S.1,2,3, Dzhabarov A.I.1,2,3, Lukichev V.F.1,2,3
1Institute of Physics, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
2Nagiev Institute of Catalysis and Inorganic Chemistry of Azerbaijan National Academy of Sciences, Baku, Azerbaijan
3Valiev Institute of Physics and Technology of RAS, Moscow, Russia
Email: solmust@gmail.com

PDF
The band structure, density of states, and electronic properties of a 32-atomic supercell of a semiconductor compound TlGaS2 containing neodymium are calculated. On the grown new single crystals of TlGaS2 : Nd3+ (0.3 mol% Nd2S3), experimental results on the physical properties have been obtained. The temperature (93-538 K) and frequency (5·104-3.5·107 Hz) dependences of the dc and ac conductivity and the frequency dispersion of the dielectric coefficients of TlGaS2 : Nd3+ single crystals have been studied. It was found that in TlGaS2 : Nd3+, in the entire studied frequency range, there are losses due to electrical conductivity, and the charge transfer has a hopping character. The parameters of localized states are estimated, such as the density of localized states near the Fermi level and their spread, the average hopping time and distance, and the concentration of deep traps responsible for the dc and ac conductivity in TlGaS2 : Nd3+. Keywords: DFT calculation, TlGaS2 supercell, neodymium doping, energy structure, density of states, dielectric properties, charge transfer, TlGaS2 : Nd3+ single crystal, direct and alternating current.
  1. S.N. Mustafaeva, V.A. Ramazanzade, M.M. Asadov. Mater. Chem. Phys. 40, 142 (1995). https://doi:10.1016/0254-0584(94)01463-q
  2. S.N. Mustafaeva, M.M. Asadov, S.B. Kyazimov, N.Z. Gasanov. Inorgan. Mater. 48, 1110 (2012). DOI: 10.1134/s0020168512090117
  3. S.N. Mustafaeva, M.M. Asadov, E.M. Kerimova, N.Z. Gasanov. Inorgan. Mater. 49, 1175 (2013). https://doi:10.1134/s0020168513120121
  4. V.G. Gurtovoy, A.U. Sheleg, V.A. Chumak, S.N. Mustafaeva, E.M. Kerimova. Vestn. Grodennskogo gos. un-ta im. Ya. Kupaly. Ser. 2. Matematika. Fizika. Informatika, vychislitelnaya tekhnika i upravleniye 186, 83 (2015) (in Russian)
  5. V.G. Gurtovoy, A.U. Sheleg, S.N. Mustafayeva, E.M. Kerimova. Izv. NAN Belarusi. Ser. fiz.-mat. nauk 2, 98 (2015) (in Russian)
  6. S.N. Mustafaeva, K.M. Guseinova, M.M. Asadov. Phys. Solid State 62, 1150 (2020). https://doi:10.1134/S1063783420070197
  7. R.E. Nikolaev, A.M. Chernovol, A.R. Tsygankova. Inorgan. Mater. 51, 88 (2015). https://doi:10.1134/S0020168515020132
  8. E.F. Westrum, R.G. Burriel, B. John, P.E. Palmer, B.J. Beaudry, W.A. Plautz. J. Chem. Physics 91, 4838 (1989). https://doi:10.1063/1.456722
  9. H. Yuan, J. Zhang, R. Yu, Q. Su. J. Rare Earths 27, 308 (2009). https://doi:10.1016/s1002-0721(08)60239-2
  10. C.M. Forster, W.B. White. Mater. Res. Bull. 41, 448 (2006). https://doi:10.1016/j.materresbull.2005.07.035
  11. S. Cwik, S.M.J. Beer, M. Schmidt, N.C. Gerhardt, T. Arcos, D. Rogalla, J. Web ing, I. Giner, M. Hofmann, G. Grundmeier, A.D. Wieck, A. Devi. Dalton Trans. 48, 2926--2938 (2019). https://doi:10.1039/c8dt04317e
  12. D. Sofich, S.G. Dorzhieva, O.D. Chimitova, B.G. Bazarov, Yu.L. Tushinova, Zh.G. Bazarova, R.Yu. Shendrik. Phys. Solid State 61, 844 (2019). https://doi:10.1134/S1063783419050342
  13. S.N. Mustafaeva, S.M. Asadov, E.M. Kerimova. Neorgan. materialy 54, 662 (2018) (in Russian). https://doi:10.1134/s0020168518070099 [S.N. Mustafaevaa, S.M. Asadov, E.M. Kerimova. Inorg. Mater. 54, 7, 627 (2018)]. https://doi:10.1134/S0020168518070099
  14. H. Yuan, M. Ohta, S. Hirai, T. Nishimura, K. Shimakage. J. Rare Earths 22, 759 (2004). https://doi.org/10.1016/S1002-0721(08)60239-2
  15. M. Ohta, S. Hirai, Z. Ma, T. Nishimura, Y. Uemura, K. Shimakage. J. Alloys Compd. 408--412, 551 (2006). https://doi:10.1016/j.jallcom.2004.12.071
  16. M. Ohta, H. Yuan, S. Hirai, Y. Uemura, K. Shimakage. J. Alloys Compd. 74, 112 (2004). https://doi:10.1016/j.jallcom.2003.11.081
  17. S.M. Asadov, S.N. Mustafaeva, V.F. Lukichev. Russ. Microelectron. 48, 263 (2020). https://doi.org/10.1134/S1063739720040022
  18. M.M. Asadov, S.N. Mustafaeva, S.S. Guseinova, V.F. Lukichev, D.B. Tagiev. Phys. Solid State 63, 797 (2021). https://doi.org/10.1134/S1063783421050036
  19. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/physrevlett.77.3865
  20. J. Heyd, G.E. Scuseria, M. Ernzerhof. J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060
  21. J. Hubbard. Proc. Roy. Soc. London A 276, 238 (1963). https://doi.org/10.1098/rspa.1963.0204
  22. S.M. Asadov, S.N. Mustafaeva. Phys. Solid State 60, 499 (2018). DOI: 10.1134/S1063783418030034
  23. G.E. Delgado, A.J. Mora, F.V. Perez, J. Gonzalez. Physica B: Condens. Matter 391, 385 (2007). https://doi:10.1016/j.physb.2006.10.030
  24. N. Sato, M. Odori, M. Skrobian, M. Saito, T. Fujino, N. Masuko. Shigen-to-Sozai 110, 869 (1994). https://doi.org/10.2473/shigentosozai.110.869
  25. N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials. OUP Oxford, 2012. 590 p. ISBN: 9780199645336
  26. B.I. Shklovskii, A.L. Efros. Electronic Properties of Doped Semiconductors. Springer, Berlin, Heidelberg (1984). 393 p. ISBN: 978-3-662-02403-4
  27. M. Pollak. Phil. Mag. 23, 519 (1971). https://doi.org/10.1080/14786437108216402
  28. V.V. Pasynkov, V.S. Sorokin. Materialy elektronnoy tekhniki. Vyssh. shk., M. (1986). 368 p. (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru