Physics of the Solid State
Volumes and Issues
On the possibilities of ab initio modeling for electron-phonon relaxation and transport properties by the examples of cadmium oxide and strontium titanate
Zhukov V. P.1, Chulkov E. V.2,3
1Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Dpto. de Poli meros y Materiales Avanzados: Fi sica, Qui mica y Tecnologi a, Facultad de Ciencias Qui micas, Aptdo., Donostia-San Sebastian, Basque Country, Spain
Email: Zhukov@ihim.uran.ru, evguenivladimirovich.tchoulkov@ehu.eus

PDF
The calculations of the electron-phonon relaxation time, Seebeck coefficient and conductivity were performed for cadmium oxide with oxygen vacancies and strontium titanate doped with niobium using the first-principle methods based on the electron density functional perturbation theory, Boltzmann theory and many-body theory of electron-phonon interaction. It is shown that the calculations of relaxation time based on the many-body theory lead to significantly more accurate results on transport characteristics than in the case of the standard approximation of a constant relaxation time. It is shown that interaction with defects has a significant effect on conductivity. Keywords: cadmium oxide, strontium titanate, electronic structure, PAW method, Boltzmann theory, transport characteristics.
  1. F. Giustino, M. L. Cohen, S.G. Louie. Phys. Rev. B 76, 165108 (2007)
  2. F. Giustino. Rev. Mod. Phys. 89, 015003 (2017)
  3. G.K.H. Madsen, D.J. Singh. Comp. Phys. Commun. 175, 67 (2006)
  4. G.K.H. Madsen, J. Carrete, M.J. Verstraete. Comp. Phys. Commun. 231, 140 (2018)
  5. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo. Phys. Rev. B 68, 125210 (2003)
  6. J.-J. Zhou, J. Park, I-T. Lu, I. Maliyov, X. Tong, M. Bernardi. Comp. Phys. Commun. 264, 107970 (2021)
  7. G. Kresse, M. Marsman, J. Furthmuller. Vienna ab-initio simulation package. VASP the guide. UniversitatWien, Wien (2018). 233 p
  8. P. Giannozzi, O. Andreussi, T. Brumme. J. Phys.: Condens. Matter. 29, 465901 (2017)
  9. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks. J. Chem. Phys. 152, 074101 (2020)
  10. S. Ponce, E.R. Margine, C. Verdi, F. Giustino. arXiv:1604.03535
  11. J. Noffsinger, F. Giustino, B.D. Malone, Ch-H. Park, S.G. Louie, M.L. Cohen. Comp. Phys. Commun. 181, 2140 (2010)
  12. A. Faghaninia. Theory of Carrier Transport From First Principles: Applications in Photovoltaic and Thermoelectric Materials. Dissertation. University of Washington (2016). 219 p.
  13. Y. Wang, Sh.-L. Shang, H. Fang, Z.-K. Liu, L.-Q. Chen. Comp. Mater. 2, 16006 (2016)
  14. F. Ricci, W. Chen, U. Aydemir, G.J. Snyder, G.-M. Rignanese, A. Jain, G. Hautier. Scientific Data 4, 17008 (2018)
  15. M. Yasukawa, K. Ueda, S. Fujitsu, H. Hosono. Ceram. Int. 43, 9653 (2017)
  16. L. Lindsay, D.S. Parker. Phys. Rev. B 92, 144301 (2015)
  17. A.A. Adewale, A. Chik, R.M. Zaki, F.Ch. Pa, Y.Ch. Keat, N.H. Jamil. Int. J. Nanoelectron. Mater. 12, 477 (2019)
  18. M.U. Kahaly, U. Schwingenschlogl. J. Mater. Chem. A 2, 10379 (2014)
  19. A. Mukasia, G.S. Manyali, H. Barasa, J. Sifuna. J. Mater. Sci. Res. Rev. 2, 1 (2019)
  20. S.K. Vasheghani Farahani, V. Munoz-Sanjose, J. Zuniga-Perez, C.F. McConville, T.D. Veal. Appl. Phys. Lett. 102, 022102 (2013)
  21. L. Qing, W.Sh. Fang, L.L. Jiang, W.J. Long, D.Sh. Yu, Y. Wei, F.G. Sheng. Sci. China-Phys. Mech. Astron 57, 1644 (2014)
  22. X. Zhang, H. Li, J. Wang. J. Adv. Ceram. 4, 226 (2015)
  23. Y. Cui, J.R. Salvador, J. Yang, H. Wang, G. Ampw, H. Klainke. J. Electron. Mater. 38, 1002 (2009)
  24. A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade. J. Appl. Phys. 113, 053704 (2013)
  25. T.T. Khan, S.-Ch. Ur. Electron. Mater. Lett. 14, 336 (2018)
  26. N.W. Ashcroft, N.D. Mermin. Solid State Physic. Cengage Learning (2011). 833 p
  27. Ph.B. Allen. Boltzmann. Boltzmann theory and resistivity in metals. In: Quantum Theory of Real Materials. Kluwer, Boston (1996). P. 219
  28. C. Jacoboni. Theory of electron transport in semiconductors. Springer series in solid-state sciences. Berlin-Heidelberg, Springer (2010). 588 p
  29. K. Burke. J. Chem. Phys. 136, 150901 (2012)
  30. K. Zeeger. Semiconductor Physics: An introduction. Springer (1991). 538 p
  31. A. Migdal. Sov. Phys. JETP 34, 996 (1958)
  32. G.M. Eliashberg. Sov. Phys. JETP 11, 696 (1960)
  33. S. Baroni, S. de Gironcoli, A. Dal Corso. Rev. Mod. Phys. 73, 515 (2001)
  34. G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999)
  35. J. Paier, R. Hirschl, M. Marsman, G. Kresse. J. Chem. Phys. 122, 234102 (2005)
  36. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke. Phys. Rev. Lett. 100, 136406 (2008)
  37. A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos. Phys. Rev. B 41, 1227 (1990)
  38. D. Vanderbilt. Phys. Rev. B 41, 7892 (1990)
  39. J.P. Perdew, A. Zunger. Phys. Rev. B 23, 5048 (1981)
  40. B. Himmetoglu, A. Janotti, H. Peelaers, A. Alkauskas, Ch.G. Van de Walle. Phys. Rev. B 90, 241204 (2014)
  41. R. Cusco, J. Ibanez, N. Domenech-Amador, L. Artus, J. Zuniga-Perez, V. Munoz-Sanjose. J. Appl. Phys. 107, 063519 (2010)
  42. M. Cococcioni, S. de Gironcoli. Phys. Rev. B 71, 035105 (2005)
  43. O. Madelung. Landolt-Bornstein Numerical Data and Functional Relationships. Springer, Berlin (1984). V. 17. 666 p.
  44. L. Lindsay, D.S. Parker. Phys. Rev. B 92, 144301 (2015)
  45. K. van Benthem, C. Elsasser. J. Appl. Phys. 90, 6156 (2001)
  46. I. Souza, N. Marzari, D. Vanderbilt. Phys. Rev. B 65, 035109 (1997)
  47. F. Hanzig, J. Hanzig, E. Mehner, C. Richter, J. Vesely, H. Stocker, B. Abendroth, M. Motylenko, V. Klemm, D. Novikov, D.C. Meyera. J. Appl. Crystallography 48, 393 (2015)
  48. I.-T. Lu, J. Park, J.-J. Zhou, M. Bernardi. Comp. Mater. 6, 17 (2020)
  49. A.M. Ganose, J. Park, A. Faghaninia, R. Woods-Robinson, K.A. Persson, A. Jain. Nature Commun. 12, 1 (2021).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru