Temperature modes and mechanical stresses in photovoltaic converters of concentrated sunlight
Panchak A. N.1, Shvarts M. Z.1
1Ioffe Institute, St. Petersburg, Russia
Email: a.panchak@mail.ioffe.ru

In photovoltaic converters of concentrated sunlight, the thermal flow is directed from the photoactive region (p-n junction) to a heat-spreading basement through the substrate. The heat sink transfers the excess thermal to the environment by convection or cooled by a liquid carrier. Reducing the thickness of the substrate makes it possible to reduce the thermal resistance of the crystal and lower the operating temperature of the photoactive region. However, in this case, the mechanical stresses in it increase. This work discusses the balance between the mechanical strength of the sample and the decrease in its operating temperature. Keywords: photovoltaic converters, heat sink, temperature regime, mechanical stress.
  1. A.V. Chekalin, A.V. Andreeva, N.Yu. Daviduk, N.S. Potapovich, N.A. Sadchikov, V.M. Andreev, D.A. Malevsky. ZhTF, 91 (6), 915 (2021) (in Russian). DOI: 10.21883 JTF.2021.06.50859.314-20
  2. M. Steiner, A. Bosch, A. Dilger, F. Dimroth, T. Dorsam, M. Muller, T. Hornung, G. Siefer, M. Wiesenfarth, A.W. Bett. Prog. Photovolt: Res. Appl., 23 (10),1323 (2014). DOI: 10.1002/pip.2568
  3. N.A. Pakhanov, V.M. Andreev, M.Z. Shvarts, O.P. Pchelyakov. Optoelectronics, Instrumentation and Data Processing, 54, 187 (2018). DOI: 10.3103 S8756699018020115
  4. J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman, H.L. Guthrey, M.R. Young, T. Song, T. Moriarty. Nature Energy, 5, 326 (2020). DOI: 10.1038 s41560-020-0598-5
  5. X. Zhang, J. Hu, Y. Wu, F. Lu. J. Phys. D: Appl. Phys., 42, 145401 (2009). DOI: 10.1088/0022-3727/42/14/145401
  6. N.Yu. Daviduk, A.V. Andreeva, D.A. Malevsky, P.V. Pokrovsky, N.A. Sadchikov, A.V. Chekalin, V.M. Andreev. Tech. Phys. Lett., 46, 436 (2020). DOI: 10.1134/S1063785020050041 [N.Yu. Daviduk, A.V. Andreeva, D.A. Malevsky, P.V. Pokrovsky, N.A. Sadchikov, A.V. Chekalin, V.M. Andreev. Tech. Phys. Lett., 46, 436 (2020). DOI: 10.1134/S1063785020050041]
  7. L.D. Landau, E.M. Lifshitz. Theory of Elasticity (3rd ed.) (Elsevier, 1986), v. 7, Ch. V, p. 152. DOI: 10.1063/1.3057037
  8. A.V. Andreeva, N.Yu. Daviduk, D.A. Malevsky, A.N. Panchak, N.A. Sadchikov, A.V. Chekalin. FTP, 52, 3 (2018) (in Russian). DOI: 10.21883 JTF.2021.02.50365.155-20
  9. G. Peharz, J.P.F. Rodri guez, G. Siefer, A.W. Bett. Prog. Photovolt: Res. Appl., 19, 54 (2011). DOI: 10.1002 pip.987
  10. A.S. Okhotin, A.S. Pushkarskii, V.V. Gorbachev. Thermophysical Properties of Semiconductors (Atom, Publ. House, M., 1972)
  11. J.S. Blakemore. J. Appl. Phys., 53 (10), 123 (1982). DOI: 10.1063/1.331665
  12. M. White, J. Gran, N. Tomlin, J. Lehman. Metrologia, 51, S245 (2014). DOI: 10.1088/0026-1394/51/6/S245
  13. G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande. J. Phys. Chem. Sol., 48 (7), 641 (1987). DOI: 10.1016/0022-3697(87)90153-3
  14. M. Bukhari, M.S.J. Hashmi, D. Brabazon. In The 2nd International Malaysia-Ireland Joint Symposium on Engineering, Science and Business (IMiEJS), 2012 At: Putra World Trade Centre, Kuala Lumpur, Malaysia
  15. E. Ranjbarnodeh, S. Serajzadeh, A.H. Kokabi, A. Fischer. J. Mater. Sci., 46, 3225 (2011). DOI: 10.1007/s10853-010-5207-8
  16. W. Martienssen, H. Warlimont Springer handbook of Condensed Matter and Materials Data (Springer, Berlin, 2005), p. 431. DOI: 10.1007/3-540-30437-1
  17. S.I. Novikova. Sov. Phys. Sol. State, 2 (1),37 (1960)
  18. S.I. Novikova. Sov. Phys. Sol. State, 3 (1),129 (1961)
  19. D. Minakov, P. Levashov. Phys. Rev. B., 92, 224102 (2015). DOI:10.1103/PhysRevB.92.224102
  20. G.A. Slack, S.F. Bartram. J. Appl. Phys., 46 (1), 89 (1975). DOI: 10.1063/1.321373
  21. L. Del Castillo, D. Schatzel, C. Weber, T. Hatake, M. Mojarradi, E.A. Kolawa. In Proc. 4th Int. Planetary Probe Workshop, (2006)
  22. G. Sun, Z. Chen, Z. Liu. J. Mater. in Civil Engineer., 23, 1017, (2011). DOI: 10.1061/(ASCE)MT.1943-5533.0000271
  23. Y. Wang, J.J. Wang, W.Y. Wang, Z. Mei, S. Shang, L. Chen, Z. Liu. J. Physics-Condensed Matter, 22, 202201 (2010). DOI: 10.1088/0953-8984/22/20/202201
  24. L.D. Landau, E.M. Lifshitz. Theory of Elasticity (3rd ed.) (Elsevier, 1986), v. 7, Ch. I, p. 2. DOI: 10.1063/1.3057037
  25. R.M. Jones. Deformation Theory of Plasticity (Bull Ridge Corporation, 2009), Section 4.5.6, p. 151. ISBN: 978-0-9787223-1-9
  26. Y. Deng, S. Tang, D. Tung. 2018 IEEE International Conference on Applied System Invention (ICASI), (Chiba, Japan, 2018), p. 1149-1151. DOI: 10.1109/ICASI.2018.8394487
  27. M. Vajdi, F. Moghanlou, F. Sharifian Jazi, M. Shahedi Asl, M. Shokouhimehr. J. Composites and Compounds, 2 (2), 35 (2020). DOI: 10.29252/jcc.2.1.5
  28. Yu.V. Milman, I.V. Gridneva, A.A. Golubenk. Sci. Sinter., 39, 67 (2007). DOI: 10.2298/SOS0701067M
  29. I. Yonenaga, K. Sumino. J. Appl. Phys., 71, 4249 (1992). DOI: 10.1063/1.350805
  30. C. Algora, I. Rey-Stolle. Handbook of Concentrator Photovoltaic Technology (Willey, United Kingdom, 2016), p. 264. DOI: 10.1002/9781118755655
  31. E.F. Fernandez, G. Siefer, M. Schachtner, A.J. Garci a Loureiro, P. Perez-Higueras. AIP Conf. Proceed., 1477, 189 (2012). DOI:10.1063/1.4753865

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru