Photoinduced charge transfer in layered 2D PbSe-MoS2 nanostructures
Skurlov I. D.1, Parfenov P. S.1, Sokolova A. V.1, Tatarinov D. A.1, Babaev A. A.1, Baranov M. A.1, Litvin A. P.1
1Center "Informational Optical Technologies", laboratory "Optics of quantum nanostructures", ITMO University, Saint-Petersburg, Russia
Email: ivan.skurlov.23@gmail.com

PDF
Semiconductor 2D nanostructures are a new platform for the creation of modern optoelectronic devices. Layered 2D PbSe-MoS2 nanostructures with efficient photoinduced charge transfer from PbSe nanoplatelets (NPLs) to MoS2 were created. When PbSe NPLs with short organic ligands are deposited onto a thin layer of MoS2 NPLs, a decrease in their photoluminescence intensity and a decrease in the average photoluminescence lifetime are observed. When a layered 2D PbSe-MoS2 nanostructure is illuminated with IR radiation, a photocurrent appears, which indicates the contribution of PbSe NPLs to the electrical response of the system. Ultrathin layers of transition metal dichalcogenides sensitized with nanostructures based on lead chalcogenides can be used in photodetectors with a spectral sensitivity region extended to the near-IR range. Keywords: nanoplatelets, transition metal dichalcogenides, charge transfer, near infrared region.
  1. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis. Nat. Rev. Mater., 28 (2), 1-15 (2017). DOI: 10.1038/natrevmats.2017.33
  2. D. Yang, D. Ma. Adv. Opt. Mater., 7, 1800522 (2019). DOI: 10.1002/ADOM.201800522
  3. F. Wang, Y. Zhang, Y. Gao, P. Luo, J. Su, W. Han, K. Liu, H. Li, T. Zhai. Small, 15, 1901347 (2019). DOI: 10.1002/SMLL.201901347
  4. X. Zhou, X. Hu, J. Yu, S. Liu, Z. Shu, Q. Zhang, H. Li, Y. Ma, H. Xu, T. Zhai. Adv. Funct. Mater., 28, 1-28 (2018). DOI: 10.1002/adfm.201706587
  5. C. Mu, J. Xiang, Z. Liu. J. Mater. Res., 32, 4115-4131 (2017). DOI: 10.1557/jmr.2017.402
  6. D. Kufer, G. Konstantatos. ACS Photonics, 3, 2197-2210 (2016). DOI: 10.1021/ACSPHOTONICS.6B00391
  7. D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F.H.L. Koppens, G. Konstantatos. Adv. Mater., 27, 176-180 (2015). DOI: 10.1002/ADMA.201402471
  8. Y. Yu, Y. Zhang, X. Song, H. Zhang, M. Cao, Y. Che, H. Dai, J. Yang, H. Zhang, J. Yao. ACS Photonics, 4, 950-956 (2017). DOI: 10.1021/acsphotonics.6b01049
  9. C. Hu, D. Dong, X. Yang, K. Qiao, D. Yang, H. Deng, S. Yuan, J. Khan, Y. Lan, H. Song, J. Tang. Adv. Funct. Mater., 27, 1603605 (2017). DOI: 10.1002/adfm.201603605
  10. J. Schornbaum, B. Winter, S.P. Schieb l, F. Gannott, G. Katsukis, D.M. Guldi, E. Spiecker, J. Zaumseil. Adv. Funct. Mater., 24, 5798-5806 (2014). DOI: 10.1002/ADFM.201400330
  11. B. Kundu, O. Ozdemir, M. Dalmases, G. Kumar, G. Konstantatos. Adv. Opt. Mater., 2101378 (2021). DOI: 10.1002/ADOM.202101378
  12. M. Nasilowski, B. Mahler, E. Lhuillier, S. Ithurria, B. Dubertret. Chem. Rev., 116, 10934-10982 (2016). DOI: 10.1021/acs.chemrev.6b00164
  13. E. Lhuillier, S. Pedetti, S. Ithurria, B. Nadal, H. Heuclin, B. Dubertret. Acc. Chem. Res., 48, 22-30 (2015). DOI: 10.1021/ar500326c
  14. B. Guzelturk, H.V. Demir. Adv. Funct. Mater., 26, 8158-8177 (2016). DOI: 10.1002/adfm.201603311
  15. Y. Wen, L. Yin, P. He, Z. Wang, X. Zhang, Q. Wang, T.A. Shifa, K. Xu, F. Wang, X. Zhan, F. Wang, C. Jiang, J. He. Nano Lett., 16, 6437-6444 (2016). DOI: 10.1021/acs.nanolett.6b02881
  16. P.S. Parfenov, A.P. Litvin, E.V. Ushakova, A.V. Fedorov, A.V. Baranov, K. Berwick. Rev. Sci. Instrum., 84, 116104 (2013). DOI: 10.1063/1.4829717
  17. I.D. Skurlov, D.A. Onishchuk, P.S. Parfenov, A.P. Litvin. Opt. Spectrosc., 1255 (125), 756-759 (2018). DOI: 10.1134/S0030400X18110279
  18. P.S. Parfenov, A.P. Litvin, A.V. Baranov, A.V. Veniaminov, E.V. Ushakova. J. Appl. Spectrosc., 78, 433-439 (2011). DOI: 10.1007/s10812-011-9474-1
  19. T. Galle, M. Samadi Khoshkhoo, B. Martin-Garcia, C. Meerbach, V. Sayevich, A. Koitzsch, V. Lesnyak, A. Eychmuller. Chem. Mater., 31, 3803-3811 (2019). DOI: 10.1021/acs.chemmater.9b01330
  20. I. Skurlov, A. Sokolova, T. Galle, S. Cherevkov, E. Ushakova, A. Baranov, V. Lesnyak, A. Fedorov, A. Litvin. Nanomaterials, 10, 1-14 (2020). DOI: 10.3390/nano10122570
  21. I.D. Skurlov, A.S. Mudrak, A.V. Sokolova, S.A. Cherevkov, M.A. Baranov, A. Dubavik, P.S. Parfenov, A.P. Litvin. Opt. Spectrosc., 128 (8), 1236-1240 (2020). DOI: 10.1134/S0030400X20080330
  22. A. Castellanos-Gomez, J. Quereda, H.P. Van Der Meulen, N. Agrai t, G. Rubio-Bollinger. Nanotechnology, 27, 1-16 (2016). DOI: 10.1088/0957-4484/27/11/115705
  23. C. Backes, B.M. Szyd owska, A. Harvey, S. Yuan, V. Vega-Mayoral, B.R. Davies, P.L. Zhao, D. Hanlon, E.J.G. Santos, M.I. Katsnelson, W.J. Blau, C. Gadermaier, J.N. Coleman. ACS Nano, 10, 1589-1601 (2016). DOI: 10.1021/acsnano.5b07228

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru