Spectral response of a microresonator containing a double quantum dot modified by Coulomb interaction of localized electrons
A theoretical model of a semiconductor nanostructure consisting of a single-mode microresonator containing two quantum dots is considered. It is shown that the Coulomb interaction between electrons localized in the quantum dots modifies a spectral response of the system to an external laser field. The possibility of its use for detecting an elementary charge in the third (optically inactive) quantum dot is discussed. The influence of both diagonal (Stark effect) and non-diagonal (Foerster effect) Coulomb matrix elements of the Hamiltonian on the detection accuracy is studied. The dependences of a measuring contrast on the parameters of the resonator and the quantum dots are calculated. The existence of such structural configurations for which the contrast retains an optimal value even at large distances to the measured dot is established. Keywords: quantum dots, microresonators, nanophotonics, semiconductors, laser, measurement
- B.A. Joyce, P.C. Kelires, A.G. Naumovets, D.D. Vvedensky. Quantum Dots: Fundamentals, Applications, and Frontiers. NATO Science Series (Springer, Dordrecht, 2003)
- S. Kiravittaya, M. Benyoucef, R. Zapf-Gottwick, A. Rastelli, O.G. Schmidt. Appl. Phys. Lett., 89, 233102 (2006). DOI: 10.1063/1.2399354
- T. Mano, R. Notzel, D. Zhou, G.J. Hamhuis, T.J. Eijkemans, J.H. Wolter. J. Appl. Phys., 97, 014304 (2005). DOI: 10.1063/1.1823578
- T. van Lippen, R. Notzel, G.J. Hamhuis, J.H. Wolter. J. Appl. Phys., 97, 044301 (2005). DOI: 10.1063/1.1840098
- A. Walmsley. Science, 348, 525 (2015). DOI: 10.1126/science.aab0097
- L. Zhang, C.-H. Teng, T.A. Hill, L.-K. Lee, P.-C. Ku, H. Deng. Appl. Phys. Lett., 103, 192114 (2013). DOI: 10.1063/1.4830000
- A. Dousse, J. Suffczynski, O. Krebs, A. Beveratos, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, P. Senellart. Appl. Phys. Lett., 97, 081104 (2010). DOI: 10.1063/1.3475487
- K.K. Yadavalli, A.O. Orlov, J.P. Timler, C.S. Lent, G.L. Snider. Nanotechnology, 18, 375401 (2007)
- M.P. Bakker, A.V. Barve, T. Ruytenberg, W. Loffler, L.A. Coldren, D. Bouwmeester, van M.P. Exter. Phys. Rev. B, 91, 115319 (2015). DOI: 10.1103/PhysRevB.91.115319
- A.V. Tsukanov. Opt. Spectrosc., 123, 591 (2017). DOI: 10.1134/S0030400X17100241
- C. Barthel, M. Kj rgaard, J. Medford, M. Stopa, C.M. Marcus, M.P. Hanson, A.C. Gossard. Phys. Rev. B, 81, 161308(R) (2010). DOI: 10.1103/PhysRevB.81.161308
- DOI: 10.31857/S0544126920020088 [A.V. Tsukanov, I.Yu. Kateev. Russian Microelectronics, 49, 77 (2020). DOI: 10.1134/S1063739720020080
- C.B. Simmons, M. Thalakulam, N. Shaji, L.J. Klein, H. Qin, R.H. Blick, D.E. Savage, M.G. Lagally, S.N. Coppersmith, M.A. Eriksson. Appl. Phys. Lett., 91, 213103 (2007). DOI: 10.1063/1.2816331
- DOI: 10.31857/S0544126921020095 A.V. Tsukanov, I.Yu. Kateev. Russian Microelectronics, 50, 75 (2021). DOI: 10.1134/S1063739721020098
- A.V. Tsukanov. Quant. Electron., 51, 84 (2021). DOI: 10.1070/QEL17441
- R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, Y. Arakawa. Appl. Phys. Lett., 98, 173104 (2011). DOI: 10.1063/1.3579535
- D. Yang, B. Duan, X. Liu, A. Wang, X. Li, Y. Ji. Micromachines, 11, 72 (2020). DOI: 10.3390/mi11010072
- P.A. Golovinskii. Semiconductors, 48, 760 (2014). DOI: 10.1134/S1063782614060104
- M. Ciurla, J. Adamowski, B. Szafran, S. Bednarek. Physica E, 15, 261 (2002). DOI: 10.1016/S1386-9477(02)00572-6
- D.-Q. Yang, X. Liu, X.-G. Li, B. Duan, A.-Q. Wang, Y.-F. Xiao. Journal of Semiconductors, 42, 023103 (2021). DOI: 10.1088/1674-4926/42/2/023103
- D.A. Rasero, A.A. Portacio, P.E. Villamil, B.A. Rodri guez. Physica E, 129, 114645 (2021). DOI: 10.1016/j.physe.2021.114645
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.