Identification of NV Centers in Synthetic Fluorescent Nanodiamonds and Control of Defectiveness of Crystallites Using Electron Paramagnetic Resonance
Osipov V. Yu. 1,2, Bogdanov K.V. 2, Treussart F. 3, Rampersaud A. A.4, Baranov A. V. 2
1Ioffe Institute, St. Petersburg, Russia
2 ITMO University, St. Petersburg, Russia
3Universite Paris-Saclay, CNRS, ENS Paris-Saclay, CentraleSupelec, LuMIn, Gif-sur-Yvette, France
4Columbus Nanoworks Inc., Columbus, Ohio, United States
Email: osipov@mail.ioffe.ru, kirw.bog@gmail.com, francois.treussart@ens-paris-saclay.fr, arfaan@columbusnanoworks.com, a_v_baranov@yahoo.com

PDF
A 100 nm synthetic diamond particle with a large (> 4 ppm) amount of nitrogen vacancy (NV) centers has been studied. The latter exhibit lines associated with forbidden Delta m_s = 2 and allowed Delta m_s = 1 transitions in the electron paramagnetic resonance (EPR) spectra of the ground state of the NV(-) center. The luminescence intensity of particles in the range 550-800 nm increases with an increase in the irradiation dose of 5 MeV electrons and correlates with the integrated intensity of the peak EPR line with a g-factor g = 4.27. This value is used to estimate the concentration of NV(-) centers and to select diamond powders with the highest fluorescence intensity. The dependence of the EPR signal intensity of the Delta m_s = 2 transition of the NV(-) center on the microwave power that increases before decaying rather well characterizes the crystal quality of the local environment of the centers under study in these particles. The intensity of the x, y Delta m_s = 1 transition (at ~ 281.2 mT, 9.444 GHz) turns out to be sensitive to changes in particle size in the submicron range and the appearance of near-surface defects obtained during mechanical processing. Keywords: luminescence, nitrogen vacancy centers, synthetic diamond, nanocrystals, electron paramagnetic resonance.
  1. H.C. Chang, W.W.W. Hsiao, M.C. Su. Fluorescent nanodiamonds. (John Wiley \& Sons, Hoboken-Chichester-Oxford, 2019)
  2. S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu. J. Am. Chem. Soc., 127 (50), 17604 (2005). DOI: 10.1021/ja0567081
  3. R. Schirhagl, K. Chang, M. Loretz, C.L. Degen. Annu. Rev. Phys. Chem., 65, 83 (2004). DOI: 10.1146/annurev-physchem-040513-103659
  4. O. Shenderova, G. McGuire. Biointerphases, 10, 030802 (2015). DOI: 10.1116/1.4927679
  5. A.I. Shames, V.Y. Osipov, H.J. von Bardeleben, J.P. Boudou, F. Treussart, A.Y. Vul'. Appl. Phys. Lett., 104 (6), 063107 (2014). DOI: 10.1063/1.4865205
  6. A.I. Shames, V.Y. Osipov, J.P. Boudou, A.M. Panich, H.J. von Bardeleben, F. Treussart, A.Y. Vul'. J. Phys. D: Appl. Phys., 48 (15), 155302 (2015). DOI: 10.1088/0022-3727/48/15/155302
  7. J.H.N. Loubser, J.A. van Wyk. Rep. Prog. Phys., 41, 1201 (1978). DOI: 10.1088/0034-4885/41/8/002
  8. A.M. Zaitsev Optical properties of diamond: A data handbook. (Springer-Verlag, Berlin-Heidelberg-New York, 2001). DOI: 10.1007/978-3-662-04548-0
  9. G. Davies, M.F. Hamer. Proc. R. Soc. Lond. A. Math. Phys. Sci., 348 (1653), 285 (1976). DOI: 10.1098/rspa.1976.0039
  10. V.Y. Osipov, F. Treussart, S.A. Zargaleh, K. Takai, F.M. Shakhov, B.T. Hogan, A. Baldycheva. Nanoscale Res. Lett., 14 (1), 1 (2019). DOI: 10.1186/s11671-019-3111-y
  11. G.K. Walters, T.L. Estle. J. Appl. Phys., 32, 1854 (1961). DOI: 10.1063/1.1728252
  12. T. Rosskopf, A. Dussaux, K. Ohashi, M. Loretz, R. Schirhagl, H. Watanabe, S. Shikata, K.M. Itoh, C.L. Degen. Phys. Rev. Lett., 112, 147602 (2014). DOI: 10.1103/PhysRevLett.112.147602
  13. D.W. Boukhvalov, V.Y. Osipov, K. Takai. Phys. Chem. Chem. Phys., 23, 14592 (2021). DOI: 10.1039/D0CP05914E
  14. V.Y. Osipov, F.M. Shakhov, K.V. Bogdanov, K. Takai, T. Hayashi, F. Treussart, A. Baldycheva, B.T. Hogan, C. Jentgens. Nanoscale Res. Lett., 15 (1), 1 (2020). DOI: 10.1186/s11671-020-03433-7
  15. M.W. Doherty, V.V. Struzhkin, D.A. Simpson, L.P. McGuinness, Y. Meng, A. Stacey, T.J. Karle, R.J. Hemley, N.B. Manson, L.C.L. Hollenberg, S. Prawer. Phys. Rev. Lett., 112 (4), 047601 (2014). DOI: 10.1103/PhysRevLett.112.047601
  16. D.A. Broadway, B.C. Johnson, M.S.J. Barson, S.E. Lillie, N. Dontschuk, D.J. McCloskey, A. Tsai, T. Teraji, D.A. Simpson, A. Stacey, J.C. McCallum, J.E. Bradby, M.W. Doherty, L.C.L. Hollenberg, J.-P. Tetienne. Nano Lett., 19 (7), 4543 (2019). DOI: 10.1021/acs.nanolett.9b01402
  17. V.Y. Osipov, F.M. Shakhov, N.N. Efimov, V.V. Minin, S.V. Kidalov, A.Y. Vul'. Solid State Phys., 59 (6), 1146 (2017). DOI: 10.1134/S1063783417060191
  18. W.V. Smith, P.P. Sorokin, I.L. Gelles, G.J. Lasher. Phys. Rev., 115, 1546 (1959). DOI: 10.1103/PhysRev.115.1546
  19. B.R. Smith, D.W. Inglis, B. Sandnes, J.R. Rabeau, A.V. Zvyagin, D. Gruber, C.J. Noble, R. Vogel, E. Osawa, T. Plakhotnik. Small, 5, 1649 (2009). DOI: 10.1002/smll.200801802
  20. V.Y. Osipov, A.I. Shames, T. Enoki, K. Takai, M.V. Baidakova, A.Y. Vul'. Diam. Relat. Mat., 16 (12), 2035 (2007). DOI: 10.1016/j.diamond.2007.06.003
  21. S. Sotoma, D. Terada, T.F. Segawa, R. Igarashi, Y. Harada, M. Shirakawa. Sci. Rep., 8 (1), 1 (2018). DOI: 10.1038/s41598-018-23635-5
  22. A Gali. Nanophotonics, 8 (11), 1907 (2019). DOI: 10.1515/nanoph-2019-0154
  23. S.D. Subedi, V.V. Fedorov, J. Peppers, D.V. Martyshkin, S.B. Mirov, L. Shao, M. Loncar. Opt. Mater. Express, 9 (5), 2076 (2019). DOI: 10.1364/OME.9.002076
  24. M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C.L Hollenberg. Phys. Rep., 528 (1), 1 (2013). DOI: 10.1016/j.physrep.2013.02.001
  25. A.I. Shames, V.Y. Osipov, H.J. von Bardeleben, A.Y. Vul'. J. Phys.: Condens. Matter., 24 (22), 225302 (2012). DOI: 10.1088/0953-8984/24/22/225302
  26. S. Felton, A.M. Edmonds, M.E. Newton, P.M. Martineau, D. Fisher, D.J. Twitchen, J.M. Baker. Phys. Rev. B., 79 (7), 075203 (2009). DOI: 10.1103/PhysRevB.79.075203
  27. M.W. Doherty, N.B. Manson, P. Delaney, L.C.L. Hollenberg. New J. Phys., 13 (2), 025019 (2011). DOI: 10.1088/1367-2630/13/2/025019
  28. A.I. Shames, V.Y. Osipov, K.V. Bogdanov, A.V. Baranov, M.V. Zhukovskaya, A. Dalis, S.S. Vagarali, A. Rampersaud. J. Phys. Chem. C., 121 (9), 5232 (2017). DOI: 10.1021/acs.jpcc.6b12827
  29. I. Rehor, J. Slegerova, J. Kucka, V. Proks, V. Petrakova, M.-P. Adam, F. Treussart, S. Turner, S. Bals, P. Sacha, M. Ledvina, A.M. Wen, N.F. Steinmetz, P. Cigler. Small, 10 (6), 1106 (2014). DOI: 10.1002/smll.201302336
  30. S. Haziza, N. Mohan, Y. Loe-Mie, A.M. Lepagnol-Bestel, S. Massou, M.P. Adam, X.L. Le, J. Viard, C. Plancon, R. Daudin, P. Koebel, E. Dorard, C. Rose, F.-J. Hsieh, C.-C. Wu, B. Potier, Y. Herault, C. Sala, A. Corvin, B. Allinquant, H.-C. Chang, F. Treussart, M. Simonneau. Nat. Nanotechnol., 12 (4), 322 (2017). DOI: 10.1038/nnano.2016.260

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru