Structural transition and temperature dependencies of thermal expansion coefficients of NaNO3 embedded into the nanoporous glass
Naberezhnov A. A. 1, Alekseeva O. A. 2, Kudriavtzeva A. V.2, Chernyshov D. Yu. 2,3, Vergentiev T. Yu. 4, Fokin A. V. 1
1Ioffe Institute, St. Petersburg, Russia
2Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
3European Synchrotron Radiation Facility, Grenoble, France
4Open Joint Stock Company "Morion", Saint-Petersburg, Russia
Email: alex.nabereznov@mail.ioffe.ru, blackhole2010@yandex.ru, kdrvtsva.a@gmail.com, dmitry.chernyshov@esrf.fr, tikhon.v@gmail.com, midbarzin@yandex.ru

PDF
The temperature evolution of the crystal structure of a nanocomposite material obtained by introducing sodium nitrate NaNO3 from a melt under pressure into a nanoporous alkali borosilicate glass with an average pore diameter of 7 nm has been studied by the method of diffraction of synchrotron radiation in a wide temperature range upon heating. Analysis of the experimental diffraction patterns revealed a significant decrease in the temperature of the structural (orientational) transition by more than 50 K (up to 496 K) compared to bulk sodium nitrate. From the temperature dependence of the intensity of the superstructure peak (113), the dependence of the critical exponent β(T) for this transition was obtained and a significant difference from the critical exponent for a bulk material was found in the temperature range from 455 K to the transition temperature. Analysis of the broadening of Bragg reflections made it possible to estimate the average size (~40 nm) of sodium nitrate nanoparticles into the pores. An increase in the linear coefficient of thermal expansion in the [001] direction was found in NaNO3 nanoparticles in comparison with bulk material at temperatures above 450 K. Keywords: porous glasses, phase transitions, nanocomposite materials, synchrotron radiation diffraction, sodium nitrate, restricted geometry, structure, size effects.
  1. P. Levitz, G. Ehret, S. K. Sinha, J. M. Drake. J. Chem. Phys. 95, 8, 6151 (1991)
  2. F.L. Pundsack. J. Phys. Chem. 65, 1, 30 (1961)
  3. D.W. Breck. Zeolite molecular sieves. A Willey-Interscience Publication Jonh Willey \& Sons, N.Y. (1974). p. 771
  4. O.V. Mazurin, G.P. Roskova, V.I. Aver'yanov. Two-phase glasses: structure, properties, application. Nauka, L. (1991). 276 p
  5. T.N. Vasilevskaya, T.V. Antropova. Physics of the Solid State 51, 12, 2386 (2009)
  6. X. Huang. J. Non-Cryst. Solids 112, 1--3, 58 (1989)
  7. E.V. Colla, E.Yu. Koroleva, Yu.A. Kumzerov, B.N. Savenko, S.B. Vakhrushev. Ferroelectr. Lett. 20, 5--6, 143 (1996)
  8. E. Koroleva, A. Naberezhnov, E. Rysiakiewicz-Pasek, S. Vakhrushev, A. Sysoeva, Yu. Kumzerov. Composites B 94, 1, 322 (2016)
  9. M. Kinka, J. Banys, A. Naberezhnov. Ferroelectrics 348, 1, 67 (2007)
  10. S.V. Baryshnikov, E.V. Charnaya, Yu.A. Shatskaya, A.Yu. Milinsky, M.I. Samoilovich. Physics of the Solid State 53, 6, 1146 (2011)
  11. E.V. Colla, A. V. Fokin, Y. A. Kumzerov. Solid State Commun. 103, 2, 127 (1997)
  12. O.V. Rogazinskaya, S.D. Milovidova, A.S. Sidorkin, N.G. Popravko, M. A. Bosykh, V.S. Enshina. Ferroelectrics 397, 1, 191 (2010)
  13. A. Fokin, Yu. Kumzerov, E. Koroleva, A. Naberezhnov, O. Smirnov, M. Tovar, S. Vakhrushev, M. Glazman. J. Electroceram. 22, 1--3, 270 (2009)
  14. P.Y. Vanina, A.A. Naberezhnov, O.A. Alekseeva, A.A. Sysoeva, D.P. Danilovich, V.I. Nizhankovskii. Nanosystems: Phys. Chem. Math. 8, 4, 535 (2017)
  15. A. Sieradzki, J. Komar, E. Rysiakiewicz-Pasek, A. Cizman, R. Poprawski. Ferroelectrics 402, 1, 60 (2010)
  16. A.I. Beskrovny, S.G. Vasilovsky, S.B. Vakhrushev, D.A. Kurdyukov, O.I. Zvorykina, A.A. Naberezhnov, N.M. Okuneva. Physics of the Solid State 52, 5, 1021 (2010)
  17. R. Poprawski, E.Rysiakiewicz-Pasek, A.Sieradzki, A.Cizman, J. Polanska. J. Non-Cryst. Solids 353, 47--51, 4457 (2007)
  18. A.A. Naberezhnov, P.Yu. Vanina, A.A. Sysoeva. Physics of the Solid State 60, 3, 439 (2018)
  19. B. Dorner, I. Golosovsky, Yu. Kumzerov, D. Kurdyukov, A. Naberezhnov, A. Sotnikov. Ferroelectrics 286, 1, 213 (2003)
  20. S.V. Baryshnikov, E.V. Charnay, A.Yu. Milinskiy, Yu.A. Shatskaya, Cheng Tien, D. Michel. Physica B 405, 16, 3299 (2010)
  21. P. Cherin, W.C. Hamilton, B. Post. Acta Crystallographica 23, 3, 455 (1967)
  22. W.W. Schmahl, E. Salje. Phys Chem. Minerals 16, 8, 790 (1989)
  23. W.C.-K. Poon, E. Salje. J. Phys. C 21, 4, 715 (1988)
  24. A.S. Balabinskaya, E.N. Ivanova, M.S. Ivanova, Yu.A. Kumzerov, S.V. Pan'kova, V.V. Poborchii, S.G. Romanov, V.G. Soloviev, S.D. Khanin. Fizika i khimiya stekla 31, 3, 440 (2005) (in Russian)
  25. R. Mu, F. Jin, S.H. Morgan, D.O. Henderson, E. Silberman, J. Chem. Phys. 100, 10, 7749 (1994)
  26. E. Rysiakiewicz-Pasek, A. Naberezhnov, M. Seregin, E. Koroleva, I. Glavatskyy, M. Tovar, A. Sysoeva, E. Berman. J. Non-Crystall. Solids 357, 14, 2580 (2011)
  27. S.J. Payne, M.J. Harris, M.E. Hagen, M.T. Dove. J. Phys. Condens. Matter 9, 11, 2423 (1997)
  28. K.V. Krishna Rao, K. Satyanarayana Murthy. J. Phys. Chem. Solids 31, 4, 887 (1970)
  29. A.V. Fokin, Yu.A. Kumzerov, A.A. Naberezhnov, N.M. Okuneva, S.B. Vakhrushev, I.V. Golosovsky, A.I. Kurbakov. Phys. Rev. Lett. 89, 17, 175503-1 (2002)
  30. A. Beskrovny, I. Golosovsky, A.Fokin, Yu. Kumzerov, A. Kurbakov, A. Naberezhnov, S. Vakhrushev. Appl. Phys. A 74, supplement issue 1, s1001 (2002).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru