Dependence of the energy of emission molecular orbitals in short open carbon nanotubes on the electric field
Tomilin O. B.1, Rodionova E. V.1, Rodin E.A.1, Poklonski N. A.2, Anikeyev I. I.2, Ratkevich S. V.2
1Mordovia State University, Saransk, Russia
2Belarusian State University, Minsk, Republic of Belarus
Email: Rodionova_j87@mail.ru

PDF
On the examples of short open carbon nanotubes of armchair type (n,n), for n=3, 4, and zigzag (n,0), for n=5, 6, 7, the influence of the magnitude and direction of the external constant electric field vector on their field emission properties was studied. It is shown that the deviation of the field vector from the nanotube axis leads to an increase in the field strength to generate electron field emission. Emission orbitals in carbon nanotubes (n,n) found as a result of a new type of conjugation of p-electrons in cylindrical conjugated systems are more sensitive to a change in the direction of the electric field vector compared to emission orbitals in nanotubes (n,0). When the electric field vector deviates from the nanotube axis, the emission orbitals of carbon nanotubes change the less, the larger the nanotube diameter. Keywords: short open carbon nanotubes, field emission, conjugation of p-electrons, emission molecular orbital.
  1. I.D. Evsikov, S.V. Mit'ko, P.Yu. Glagolev, N.A. Dyuzhev, G.D. Demin. Technical Physics 65, 11, 1846 (2020). https://doi.org/10.1134/S1063784220110067
  2. E.G. Rakov. Russ. Chem. Rev. 82, 6, 538 (2013). https://doi.org/10.1070/RC2013v082n06ABEH004340
  3. A.V. Eletskii. Physics-Uspekhi 53, 9, 863 (2010). https://iopscience.iop.org/article/10.3367/UFNe.0180.201009a. 0897
  4. F. Giubileo, A. Di Bartolomeo, L. Iemmo, G. Luongo, F. Urban. Appl. Sci. 8, 4, 526 (2018). https://doi.org/10.3390/app8040526
  5. E.D. Eidelman, A.V. Arkhipov. Physics-Uspekhi 63, 7, 648 (2020). https://iopscience.iop.org/article/10.3367/UFNe.2019.06. 038576
  6. S. Parveen, A. Kumar, S. Husain, M. Husain. Physica B 505, 1 (2017). https://doi.org/10.1016/j.physb.2016.10.031
  7. O.B. Tomilin, E.V. Rodionova, E.A. Rodin. Russ. J. Phys. Chem. A 94, 8, 1657 (2020). https://doi.org/10.1134/S0036024420080269
  8. O.B. Tomilin, E.V. Rodionova, E.A. Rodin. Russ. J. Phys. Chem. A 95, 9, 1883 (2021). https://doi.org/10.1134/S0036024421090296
  9. P. von Rague Schleyer, H. Jiao, M.N. Glukhovtsev, J. Chandrasekhar, E. Kraka. J. Am. Chem. Soc. 116, 22, 10129 (1994). https://doi.org/10.1021/ja00101a035
  10. A.A. Fokin, H. Jiao, P. von Rague Schleyer. J. Am. Chem. Soc. 120, 36, 9364 (1998). https://doi.org/10.1021/ja9810437
  11. A.V. Tuchin, L.A. Bityutskaya, E.N. Bormontov. Nano- i mikrosistemnaya tekhnika, 4, 19 (2013) (in Russian). http://www.microsystems.ru/files/publ/article201304p19-21.pdf
  12. A.V. Tuchin, L.A. Bityutskaya, E.N. Bormontov. Physics of the Solid State 56, 8, 1685 (2014). https://doi.org/10.1134/S1063783414080277
  13. R.I. Gearba, T. Mills, J. Morris, R. Pindak, C.T. Black, X. Zhu. Adv. Funct. Mater. 21, 14, 2666 (2011). https://doi.org/10.1134/S1063783414080277
  14. T. Dumitricva, Ch.M. Landis, B.I. Yakobson. Chem. Phys. Lett. 360, 1-2, 182 (2002). https://doi.org/10.1016/S0009-2614(02)00820-5
  15. N.A. Poklonski, S.V. Ratkevich, S.A. Vyrko, A.T. Vlassov. Int. J. Nanosci. 18, 03n04, 1940008 (2019). https://doi.org/10.1142/S0219581X19400088
  16. O.B. Tomilin, N.A. Poklonski, E.V. Rodionova, E.A. Rodin, I.I. Anikeev, V.A. Kushnerov, A.S. Chitalov. Materialy i struktury sovremennoy elektroniki. Materialy IX Mezhdunar. nauch. konf. (14-16 Oct. 2020) BSU, Minsk (2020). P. 406 (in Russian). https://elib.bsu.by/handle/123456789/257358
  17. S. Han, J. Ihm. Phys. Rev. B 66, 24, 241402(R) (2002). https://doi.org/10.1103/PhysRevB.66.241402
  18. P. Yaghoobi, M.V. Moghaddam, A. Nojeh. In: 23rd Int. Vacuum Nanoelectronic Conf. Palo Alto, CA (2010). P. 115 https://doi.org/10.1109/IVNC.2010.5563199
  19. A. Navitski, G. Muller, V. Sakharuk, A.L. Prudnikava, B.G. Shulitski, V.A. Labunov. J. Vac. Sci. Technol. B 28, 2, C2B14 (2010). http://dx.doi.org/10.1116/1.3300062
  20. J.-W. Song, Y.-S. Kim, Y.-H. Yoon, E.-S. Lee, C.-S. Han, Y. Cho, D. Kim, J. Kim, N. Lee, Y.-G. Ko, H.-T. Jung, S.-H. Kim. Physica E 41, 8, 1513 (2009). https://doi.org/10.1016/j.physe.2009.04.031
  21. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. J. Comp. Chem. 14, 11, 1347 (1993). https://doi.org/10.1002/jcc.540141112
  22. A.G. Rinzler, J.H. Hafner, P. Nikolaev, P. Nordlander, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tomanek. Science 269, 5230, 1550 (1995). https://doi.org/10.1126/science.269.5230.1550
  23. M.D. Bel'skii, G.S. Bocharov, A.V. Eletskii, T.J. Sommerer. Technical Physics 55, 2, 289 (2010). https://doi.org/10.1134/S1063784210020210

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru