Investigation of structural perfection of lithium niobate single crystals of different composition and genesis by IR spectroscopy in the area of valent vibrations of hydrogen bonds
Bobreva L. A. 1, Sidorov N. V. 1, Teplyakova N. A. 1, Palatnikov M. N. 1, Klimin S.A.2, Novikova N.N.2
1Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences», Apatity, Russia
2Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
Email: l.bobreva@ksc.ru, n.sidorov@ksc.ru, n.tepliakova@ksc.ru, m.palatnikov@ksc.ru

PDF
We have analyzed complex defects due to the presence of hydrogen bonds in the crystal structure in nominally pure lithium niobate crystals with different Li/Nb ratio, in crystals alloyed with magnesium and zinc in a wide concentration range (LiNbO3 : Mg (0.19-5.91 mol.% MgO) and LiNbO3 : Zn (0.04-6.5 mol.% ZnO)) and in the double-alloyed crystals (LiNbO3 : Y(0.24) : Mg(0.63 wt.%) and LiNbO3 : Gd( 0.25) : Mg(0.75 wt.%)), obtained by technology of direct melt alloying, and also in the double-alloyed crystal (LiNbO3 : Mg(5.05 mol.% MgO) : Fe(0.009 mol.% Fe2O3)) grown from a charge synthesized using the technology of homogeneous alloying with magnesium and iron Nb2O5. We revealed the influence of doping impurities on the concentration of OH-groups, the type and localization of complex defects in the crystal structure. The change in the number of hydrogen atom positions in the structure of the LiNbO3 crystal allow us to judge with sufficient accuracy whether the crystal composition is stoichiometric or congruent. For doped crystals of different compositions data were obtained testifying to changes in the character of complexation of OH-groups with point defects of the cationic sublattice with formation of defects: MeLi-OH-, MeLi-MeNb-OH. A change in the mechanism of entry of the dopant cation into the structure dramatically affects the change in the properties of the crystal.The difference in the frequencies (and, correspondingly, in the values of the quasi-elastic constants of the O-H bonds) in the spectrum of a congruent crystal and doped crystals can also be contributed by differences in the electronegativity and ionic radii of the principal and doping cations. Keywords: lithium niobate crystal, doping, complex and point structural defects, IR absorption spectroscopy, valence vibrations of OH-groups
  1. Yu.S. Kuz'minov, Elektroopticheskii i nelineinoopticheskii kristall niobata litiya (Nauka, M., 1987) (in Russian)
  2. N.V. Sidorov, T.R. Volk, B.N. Mavrin, V.T.Kalinnikov, Niobat litiya: defekty, fotorefraktsiya, kolebatel'nyi spektr, polyaritony (Nauka, M., 2003) (in Russian)
  3. K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, K. Polgar. Appl. Phys. Rev., 2, 040601 (2015). DOI: 10.1063/1.4929917
  4. L. Kovacs, M. Wohlecke, A. Jovanovic, K. Polgar, S. Kapphan. J. Phys. Chem. Sol., 52 (6), 797 (1991). DOI: 10.1016/0022-3697(91)90078-E
  5. L. Kovacs, Zs. Szaller, K. Lengyel, G. Corradi. Opt. Mat., 37, 55 (2014). DOI: 10.1016/j.optmat.2014.04.043
  6. J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, E. Dieguez. Adv. Phys., 45 (5), 349 (1996). DOI: 10.1080/00018739600101517
  7. L. Arizmendi, E.J. Ambite, J.L. Plaza. Opt. Mat., 35 (12), 2411 (2013). DOI: 10.1016/j.optmat.2013.06.043
  8. Z. Galazka. J. Cryst. Growth., 178 (3), 345 (1997). DOI: 10.1016/S0022- 0248(96)01159-1
  9. K. Lengyel, L. Kovacs, A. Peter, K. Polgar, G. Corradi, A. Baraldi, R. Capelletti. Appl. Phys. Lett., 96, 191907 (2010). DOI: 10.1063/1.3428772
  10. T. Volk, M. Wohlecke. Lithium niobate. Defects, photorefraction and ferroelectric switching (Springer, Berlin, 2008)
  11. Y. Kong, W. Zhang, X. Chen, J. Xu, G. Zhang. J. Phys: Cond. Mat., 11 (9), 2139 (1999). DOI: 10.1088/0953-8984/11/9/010
  12. Y. Kong, J. Xu, W. Zhang, G. Zhang. J. Phys. Chem. Sol., 61 (8), 1331 (2000). DOI: 10.1016/S0022-3697(99)00413-8
  13. S.V. Yevdokimov, A.V. Yatsenko. Cryst. Rep., 48 (4), 542 (2003). DOI: 10.1134/1.1595175
  14. A.N. Lazarev, Ya.I. Ryskin, G.P. Stavitskaya, Kolebaniya okisnykh reshetok (Nauka, L., 1980) (in Russian)
  15. M. Engelsberg, R.E. de Souza, L.H. Pacobahyba, G.C. do Nascimento. Appl. Phys. Lett., 67, 359 (1995). DOI: 10.1063/1.114628
  16. A.V. Yatsenko, Ukr. Fiz. Zh., 44 (3), 411 (1999)
  17. S.C. Abrahams, P. March. Acta Crystallogr., Sect. B: Struct. Sci., 42 (2), 61 (1986). DOI: 10.1107/S0108768186098567
  18. S.C. Abrahams. Properties of Lithium Niobate (Pergamon, New York, 1989)
  19. S.C. Abrahams, J.M. Reddy, J.L. Bernstein. J. Phys. Chem. Sol., 27 (6/7), 997 (1966). DOI: 10.1016/0022-3697(66)90072-2
  20. Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, S. Kimura. J. Physics: Condens. Matter., 7 (18), 3627 (1995). DOI: 10.1088/0953-8984/7/18/025
  21. Y. Furukawa, K. Kitamura, S. Tadekawa, K. Niwa, Y. Yajima, N. Iyi, I. Mnushkina, P. Guggenheim, J.M. Martin. J. Cryst. Growth., 211 (1--4), 230 (2000). DOI: 10.1016/S0022-0248(99)00794-0
  22. K. Lengyel, V. Timon, A. Hernandez-Laguna, V. Szalay, L. Kovacs. IOP Conf. Ser.: Mater. Sci. Eng., 15, 012015 (2010). DOI: 10.1088/1757-899X/15/1/012015
  23. H.H. Nahm, C.H. Park. Appl. Phys. Lett., 78 (24), 3812 (2001). DOI: 10.1063/1.1376667
  24. J.R. Herrington, B. Dischler, A. Rauber, J. Schneider. Sol. Stat. Commun., 12 (5), 351 (1973). DOI: 10.1016/0038-1098(73)90771-0
  25. M. Cochez, M. Ferriol, P. Bourson, M. Aillerie. Opt. Mater., 21 (4), 775 (2003). DOI: 10.1016/S0925-3467(02)00098-8
  26. K. Lengyel, L. Kovacs, A. Peter, K. Polgar, G. Corradi. Appl. Phys. B: Lasers and Optics., 87 (2), 317 (2007). DOI: 10.1007/s00340-007-2589-7
  27. L. Kovacs, I. Foldvari, I. Cravero, K. Polgar, R. Capelletti. Phys. Lett. A., 133 (7--8), 433 (1988). DOI: 10.1016/0375-9601(88)90931-0
  28. A. Grone, S. Kapphan. J. Phys. Chem. Sol., 56 (5), 687 (1995). DOI: 10.1016/0022-3697(94)00184-7
  29. R. Bhatt, S. Kar, K.S. Bartwal, V. Shula, P. Sen, P.K. Sen, V.K. Wadhawan. Ferroelectrics, 323 (1), 165 (2005). DOI: 10.1080/00150190500309148
  30. K. Polgar, A. Peter, L. Kovacs, G. Corradi, Zs. Szaller. J. Cryst. Growth., 177 (3--4), 211 (1997). DOI: 10.1016/S0022-0248(96)01098-6
  31. N.V. Sidorov, M.N. Palatnikov, L.A. Bobreva, S.A. Klimin. Inorg. Mater., 55 (4), 365 (2019). DOI: 10.1134/S0020168519040137
  32. N.V. Sidorov, M.N. Palatnikov, L.A. Bobreva. J. Structural Chemistry, 60, 1434 (2019). DOI: 10.26902/JSC_id46180
  33. X.Q. Feng, J.F. Ying, Y.A. Wu, J.C. Liu. Chin. Sci. Bull., 36, 297 (1991)
  34. A. Reisman, F. Holtzberg. J. Amer. Chem. Soc., 80, 6503 (1958). DOI: 10.1021/ja01557a010
  35. N.V. Sidorov, P.G. Chufyrev, M.N. Palatnikov, V.T. Kalinnikov, Nano- Mikrosist. Tekh., (3), 12 (2006) (in Russian)
  36. J.J. Liu, W.L. Zhang, G.Y. Zhang. Phys. St. Sol. A., 156 (2), 285 (1996). DOI: 10.1002/pssa.2211560207
  37. M.N. Palatnikov, N.V. Sidorov, O.V. Makarova, I.V. Biryukova, Fundamental'nye aspekty tekhnologii sil'no legirovannykh kristallov niobata litiya (Izd. Kol'sk. Nauchn. Tsentra Ross Akad. Nauk, Apatity, 2017) (in Russian)
  38. M.N. Palatnikov, N.V. Sidorov, D.V. Manukovskaya, O.V. Makarova, L.A. Aleshina, A.V. Kadetova. J. American Ceramic Society, 100 (8), 3703 (2017). DOI: 10.1111/jace.14851
  39. N. Iyi, K. Kitamura, F. Izumi, J.K. Yamamoto, T. Hayashi, H. Asano, S. Kimura. J. Sol. State Chem., 101, 340 (1992). DOI: 10.1016/0022-4596(92)90189-3
  40. B.C. Grabmaier, F. Otto. J. Cryst. Growth., 79 (1-3), 682 (1986). DOI: 10.1016/0022-0248(86)90537-3
  41. T. Zhang, B. Wang, F.R. Ling, S.-Q. Fang, Y.-H. Xu. Mater. Chem. Phys., 83 (2--3), 350 (2004). DOI: 10.1016/j.matchemphys.2003.10.010
  42. H. Wang, J. Wen, B. Li, H. Wang. Phys. St. Sol. (a), 118 (1), K47 (1990). DOI: 10.1002/pssa.2211180151
  43. X.H. Zhen, L.C. Zhao, Y.H. Xu. Appl. Phys. B., 76 (6), 655 (2003). DOI: 10.1007/s00340-003-1158-y
  44. Y. Fan, C. Xu, S. Xia, C. Guan, L. Cao, Q. He, G. Jin. J. Cryst. Growth., 312, 1875 (2010). DOI: 10.1016/j.jcrysgro.2010.03.001
  45. L. Kovacs, L. Rebouta, J.C. Soares, M.F. da Silva, M. Hage-Ali, J.P. Stoquert, P. Siffert, J.A. Sanz-Garcia, G. Corradi, Z. Szaller, K. Polgar. J. Phys-Condens. Matt., 5, 781 (1993)
  46. Y. Kong, J. Deng, W. Zhang, J. Wen, G. Zhang, H. Wang. Phys. Lett. A., 196 (1--2), 128 (1994). DOI: 10.1016/0375-9601(94)91057-X
  47. I.T. Goronovskii, Yu.P. Nazarenko, E.F. Nekryach, Kratkii spravochnik po khimii, 5th ed., Ed. A.T. Pilipenko (Nauk. Dumka, Kyiv, 1987) (in Russian)
  48. L. Rebouta, P.J.M. Smulders, D.O. Boerma, F. Aguillo, Lopez, M.F. da Silva, J.C. Soares. Phys. Rev. B., 48, 3600 (1993). DOI: 10.1103/PhysRevB.48.3600
  49. A. Lorenzo, H. Jaffrezic, B. Roux, G. Boulon, J. Garcia-Sole. Appl. Phys. Lett., 67 (25), 3735 (1995). DOI: 10.1063/1.115366
  50. T. Gog, M. Griebenow, G. Materlik. Phys. Lett. A., 181 (5), 417 (1993). DOI: 10.1016/0375-9601(93)90398-J
  51. G. Burns, D.F. O'kane, R.S. Title. Phys. Rev., 167 (2), 314 (1968). DOI: 10.1103/PhysRev.167.314
  52. T. Tsuboi, S.M. Kaczmarek, G. Boulon. J. Alloys Compd., 380 (1--2), 196 (2004). DOI: 10.1016/j.jallcom.2004.03.043
  53. H.-N. Dong, S.-Y. Wu, W.-C. Zheng. J. Phys. Chem. Sol., 64 (4), 695 (2003). DOI: 10.1016/S0022-3697(02)00381-5
  54. S.H. Choh, J.H. Kim, I.-W. Park, H.J. Kim, D. Choi, S.S. Kim. Appl. Magn. Reson., 24, 313 (2003). DOI: 10.1007/BF03166932
  55. L. Kovacs, L. Kocsor, Z. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, G. Corradi. Crystals, 7 (8), 230 (2017). DOI: 0.3390/cryst7080230

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru