Luminescence properties of non-stoichiometric lithium niobate crystals of various composition and genesis (review)
Smirnov M. V. 1, Sidorov N. V. 1, Palatnikov M. N. 1
1Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences», Apatity, Russia
Email: m.smirnov@ksc.ru

PDF
A brief review of the features of the defect structure and studies of the luminescent properties of nonlinear optical lithium niobate crystals of various compositions and genesis was given. It was established that the electron-hole pair NbNb4+-O- in the oxygen-octahedral cluster NbO6 emitted in the short-wavelength region of the visible spectrum (400-500 nm), while point defects (VLi and NbNb4+-NbLi4+ bipolarons) - in the long-wavelength region (500-620 nm). At the ratio of Li/Nb~ 1 the luminescence was extinguished in the visible region of the spectrum due to decreasing the intrinsic luminescence centers. It was shown that the presence of polaron luminescence in the near-IR region (700-1050 nm) was due to the small polarons NbLi4+ and impurity ions Cr3+ localized in lithium and niobium octahedra. The energy transfer between the luminescence centers in the visible and near-IR spectral regions was detected. Moreover, luminescence in near-IR regions was dominant. Doping of LiNbO3 crystals with zinc and magnesium at ZnO <4.46 mol.% and MgO <5.29 mol.% led to decreasing luminescence of intrinsic defects (VLi, NbNb4+-NbLi4+). However, there was an increase of the contribution of the short-wave spectrum component at higher dopant concentrations because of the introduction of Zn and Mg into the origin positions of Nb ions. Keywords: lithium niobate single crystal, point defects, luminescence, luminescence centers.
  1. Yu.S. Kuz'minov. Elektrooptichesky i nelineyno-optichesky kristall niobata litiya (Nauka, M., 1987), p. 9-24 (in Russian)
  2. M.N. Palatnikov, N.V. Sidorov, O.V. Makarova, I.V. Biryukova. Fundamentalnye aspekty tekhnologii sil?no legirovannykh kristallov niobata litiya (Apatity: KNTs RAN, 2017) (in Russian)
  3. Venkatraman Gopalan, T.E. Mitchell, Y. Furukawa, K. Kitamura. Appl. Phys. Lett., 72 (16), 1981 (1998). DOI: 10.1063/1.121491
  4. N.V. Sidorov, N.A. Teplyakova, L.A. Bobreva, M.N. Palatnikov. J. Struct. Chem., 60 (11), 1765 (2019). DOI: 10.1134/S002247661911009X
  5. N.V. Sidorov, A.A. Kruk, N.A. Teplyakova, A.A. Yanichev, M.N. Palatnikov, O.Y. Pikoul. Opt. Spectr., 118 (2), 259 (2015). DOI: 10.1134/S0030400X15020174
  6. N.A. Teplyakova, N.V. Sidorov, M.N. Palatnikov. Perspektivnye materialy, 4, 19 (2016) (in Russian)
  7. Yuinlin Chen, Weiguo Yan, Juan Guo, Shaolin Chen, Guangyin Zhang. Appl. Phys. Lett., 87 (21), 212904 (2005). DOI: 10.1063/1.2135389
  8. S. Kumaragurubaran, S. Takekawa, M. Nakamura, S. Ganesamoorthy, K. Terabe, K. Kitamura. In: Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), p. 393
  9. V.Ya. Shur, E.L. Rumyantsev, R.G. Bachko, G.D. Miller, M.M. Feyer, R.L. Bayer. FTT, 41 (10), 1831 (1999) (in Russian)
  10. Donghwa Lee, Venkatraman Gopalan, S.R. Phillpot. Appl. Phys. Lett., 109 (8), 082905 (2016). DOI: 10.1063/1.4961614
  11. V. Kemlin, D. Jegouso, J. Debray, E. Boursier, P. Segonds, B. Boulanger, H. Ishizuki, T. Taira, G. Mennerat, J.-M. Melkonian, A. Godard. Opt. Express, 21 (23), 28886 (2013). DOI: 10.1364/OE.21.028886
  12. Kaili Zhai, Shuanggen Zhang, Xiurong Ma, Youjian Song, Minglie Hu, Qingyue Wang, Kailiang Zhang. IEEE Photonics J., 8 (2), 7802307 (2016). DOI: 10.1109/JPHOT.2016.2536364
  13. Dong Zhou Wang, De Hui Sun, Xue Liang Kang, Yuan Hua Sang, Bo Xia Yan, Hong Liu, Yong Bi. Opt. Express, 23 (14), 17727 (2015). DOI: 10.1364/OE.23.017727
  14. T.R. Volk, L.S. Kokhanchik, R.V. Gainutdinov, Y.V. Bodnarchuk, S.D. Lavrov. J. Adv. Dielect., 8 (2), 1830001 (2018). DOI: 10.1142/S2010135X18300013
  15. L. Arizmendi. Phys. Stat. Sol. A, 20 (2), 253 (2004). DOI: 10.1002/pssa.200303911
  16. S.C. Abrahams, P. Marsh. Acta. Cryst., B42, 61 (1986). DOI: 10.1107/S0108768186098567
  17. A.P. Wilkinson, A.K. Cheerham, R.H. Jarman. J. Appl. Phys., 74 (5), 3080 (1993). DOI: 10.1063/1.354572
  18. G. Dominial-Dzik, W. Ryba-Romanowski, M.N. Palatnikov, N.V. Sidorov, V.T. Kalinnikov. J. Mol. Struct., 704 (1), 139 (2004). DOI: 10.1016/j.molstruc.2004.01.063
  19. W. Ryba-Romanowski, I. Sokolska, G. Dominiak-Dzik, S. Golab. J. Alloys and Compounds, 300 (2), 152 (2000). DOI: 10.1016/S0925-8388(99)00715-X
  20. W. Ryba-Romanowski, S. Golab, G. Dominiak-Dzik, M.N. Palatnikov, N.V. Sidorov. Appl. Phys. Lett., 78 (23), 3610 (2001). DOI: 10.1063/1.1376660
  21. R. Lisiecki, B. Macalik, R. Kowalski, J. Komar, W. Ryba-Romanowski. Crystals, 10|,(11), 1034 (2020). DOI: 10.3390/cryst10111034
  22. Li Dai, Shunxiang Yang, Ruirun Chen, Chunrui Liu, Xianbo Han, Yu Shao. J. Luminescence, 217, 116773 (2020). DOI: 10.1016/j.jlumin.2019.116773
  23. M.N. Palatnikov, N.V. Sidorov, I.V. Biryukova, O.B. Shcherbina, V.T. Kalinnikov. Perspektivnye materialy, 2, 93 (2011) (in Russian)
  24. N.V. Sidorov, A.A. Yanichev, M.N. Palatnikov, A.A. Gabain. Opt. Spectr., 116 (2), 281 (2014). DOI: 10.1134/S0030400X14010202
  25. N.V. Sidorov, T.R. Volk, B.N. Mavrin, V.T. Kalinnikov. Niobat litiya: defekty, fotorefraktsiya, kolebatelny spektr, polyaritony (Nauka, M., 2003) (in Russian)
  26. N. Zotov, H. Boysen, F. Frey, T. Metzger, E. Born. J. Phys. Chem. Solids, 55 (2), 145 (1994). DOI: 10.1016/0022-3697(94)90071-X
  27. Homer Fay, W.J. Alford, H.D. Dess. Appl. Phys. Lett., 12 (3), 89 (1968). DOI: 10.1063/1.1651911
  28. P. Lerner, C. Legras, J.P. Dumas. J. Cryst. Growth, 3 (4), 231 (1968). DOI: 10.1016/0022-0248(68)90139-5
  29. L. Kovacs, K. Polgar. Cryst. Res. Technol., 21 (6), K101 (1986)
  30. N. Iyi, K. Kitamura, F. Izumi, J.K. Yamamoto, T. Hayashi, H. Asano, S. Kimura. J. Sol. Stat. Chem., 101 (2), 340 (1992). DOI: 10.1016/0022-4596(92)90189-3
  31. H.J. Donnerberg, S.M. Tomlinson, C.R.A. Catlow. J. Phys. Chem. Solids, 52 (1), 201 (1991). DOI: 10.1016/0022-3697(91)90065-8
  32. G.E. Peterson, A. Carnevale. J. Chemical Physics, 56 (10), 4848 (1972). DOI: 10.1063/1.1676960
  33. F.P. Safaryan, R.S. Feigelson, A.M. Petrosyan. J. Appl. Phys., 85 (12), 8079 (1999). DOI: 10.1063/1.370645
  34. R.M. Araujo, K. Lengyel, R.A. Jackson, L. Kovacs, M.E.G. Valerio. J. Phys.: Condens. Matter., 19, 046211 (2007). DOI: 10.1088/0953-8984/19/4/046211
  35. F. Abdi, M.D. Fontana, M. Aillerie, P. Bourson. Appl. Phys. A, 83, 427 (2006). DOI: 10.1007/s00339-006-3565-5
  36. K. Maaider, N. Masaif, A. Khalil. Indian J. Phys., 95, 275 (2021). DOI: 10.1007/s12648-020-01696-5
  37. Yongfa Kong, Jingjun Xu, Xiaojun Chen, Cunzhou Zhang, Wanlin Zhang, Guangyin Zhang. J. Appl. Phys., 87 (9), 4410 (2000). DOI: 10.1063/1.373085
  38. N.V. Sidorov, B.N. Mavrin, P.G. Chufyrev, M.N. Palatnikov. Fononnye spektry monokristallov niobata litiya (Izdatelstvo Kol?skogo naychnogo tsentra RAN, Apatity, 2012) (in Russian)
  39. N.V. Sidorov, N.A. Teplyakova, A.A. Yanichev, M.N. Palatnikov, O.V. Makarova, L.A. Aleshina, A.V. Kadetova. Inorganic materials, 53 (5), 489 (2017). DOI: 10.1134/S002016851705017X
  40. K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, K. Polgar. Appl. Phys. Rev., 2 (4), 040601 (2015)
  41. F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wohlecke. Appl. Phys. B, 68, 795 (1999). DOI: 10.1007/s003409901469
  42. T. Volk, B. Maximov, T. Chernaya, N. Rubinina, M. Wohlecke, V. Simonov. Appl. Phys. B, 72 (6), 647 (2001). DOI: 10.1007/s003400100548
  43. A.V. Kadetova. Vliyanie legirovaniya na strukturnye osobennosti niobata litiya: dis. ... magistra po napravleniyu "Elektronika i nanoelektronika" (PetrGU, Petrozavodsk, 2018) (in Russian)
  44. J.J. Amodei, D.L. Staebler. Appl. Phys. Lett., 18, 540 (1971). DOI: 10.1063/1.1653530
  45. D. von der Linde, A.M. Glass, K.F. Rodgers. Appl. Phys. Lett., 25 (3), 155 (1974). DOI: 10.1063/1.1655420
  46. Ye Ming, E. Kratzig, R. Orlowski. Phys. Stat. Sol. A, 92 (1), 221 (1985). DOI: 10.1002/pssa.2210920121
  47. L. Tsarukyan, R. Hovsepyan, R. Drampyan. Photonics and Nanostructures --- Fundamentals and Applications, 40, 100793 (2020). DOI: 10.1016/j.photonics.2020.100793
  48. J.E. Midwinter, J. Warner. J. Appl. Phys., 38 (2), 519 (1967). DOI: 10.1063/1.1709367
  49. A. Hordvik, H. Schlossberg. Appl. Phys. Lett., 20 (5), 197 (1972). DOI: 10.1063/1.1654106
  50. [N.V. Sidorov, M.V. Smirnov, M.N. Palatnikov. J. Appl. Spectrosc., 87 (2), 212 (2020). DOI: 10.1007/s10812-020-00986-4]
  51. A. Harhira, L. Guilbert, P. Bourson, H. Rinnert. Phys. Stat. Sol. C, 4 (3), 926 (2007). DOI: 10.1002/pssc.200673755
  52. A. Krampf, S. Messerschmidt, M. Imlau. Scientific Reports, 10, 11397 (2020). DOI: 10.1038/s41598-020-68376-6
  53. C. Fischer, M. Wohlecke, T. Volk, N. Rubinina. Phys. Stat. Sol. A, 137 (1), 247 (1993). DOI: 10.1002/pssa.2211370122
  54. F. Klose, M. Wohlecke, S. Kapphan. Ferroelectrics, 92 (1), 181 (1989). DOI: 10.1080/00150198908211324
  55. T.P.J. Han, F. Jaque, V. Bermudez, E. Diefuez. Chem. Phys. Lett., 369 (5-6), 519 (2003). DOI: 10.1016/S0009-2614(02)02028-6
  56. M.G. Clark, F.J. DiSalvo, A.M. Glass, G.E. Peterson. J. Chem. Phys., 59 (12), 6209 (1973). DOI: 10.1063/1.1680000
  57. M.V. Ciampolillo, M. Bazzan, C. Sada, N. Argiolas, A. Zaltron, E. Cattaruzza, S. Mignoni, P. Bourson, M.D. Fontana, M. Bianconi. Ferroelectrics, 389 (1), 142 (2009). DOI: 10.1080/00150190902993275
  58. L.E. Halliburton, K.L. Sweeney, C.Y. Chen. Nuclear Instruments and Methods in Physics Research B, 1 (2-3), 344 (1984). DOI: 10.1016/0168-583X(84)90090-9
  59. D.M. Krol, G. Blasse, R.C. Powell. J. Chem. Phys., 73 (1), 163 (1980). DOI: 10.1063/1.439901
  60. J. Llopis, C. Ballesteros, R. Gonzalez, Y. Chen. J. Appl. Phys., 56 (2), 460 (1984). DOI: 10.1063/1.333932
  61. N.V. Sidorov, M.V. Smirnov, M.N. Palatnikov, V.B. Pikulev. Opt. i spektr., 129 (5), 634 (2021) (in Russian). DOI: 10.21883/OS.2021.05.50891.248-20
  62. Richard C. Powell, Edwin E. Freed. J. Chem. Phys., 70 (10), 4681 (1979). DOI: 10.1063/1.437253
  63. E.V. Stroganova. Issledovanie, sintez i vyrashchivanie opticheskikh gradientno-aktivirovannykh kristallov na osnove niobata litiya. Avtoref. dokt. dis. (FGBOU VO "Kubansky gosudarstvenny universitet", Krasnodar, 2017) (in Russian). URL: http://docspace.kubsu.ru/docspace/handle/1/1059
  64. V.V. Galutskii, E.V. Stroganova, N.A. Yakovenko. Opt. Spectrosc. 110 (3), 401 (2011). DOI: 10.1134/S0030400X10061049
  65. V. Trepakov, A. Skvortsov, S. Kapphan, L. Jastrabik, V. Vorlcek. Ferroelectrics, 239 (1), 297 (2000). DOI: 10.1080/00150190008213335
  66. P. Bourson, M. Aillerie, M. Cochez, M. Ferriol, Y. Zhang, L. Guilbert. Optical Materials, 24 (1-2), 111 (2003). DOI: 10.1016/S0925-3467(03)00113-7
  67. H.-J. Reyher, R. Schulz, O. Thiemann. Phys. Rev. B, 50 (6), 3609 (1994). DOI: 10.1103/PhysRevB.50.3609
  68. H. Kurz, E. Kratzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Rauber. Appl. Phys., 12 355 (1977). DOI: 10.1007/BF00886038
  69. O.F. Schirmer, D. von der Linde. Appl. Phys. Lett., 33, 35 (1978). DOI: 10.1063/1.90181
  70. G. Blasse, A. Bril. J. Electrochem. Soc., 115 (10), 1067 (1968). DOI: 10.1149/1.2410880
  71. G. Blasse, L.G.J. De Haart. Materials Chemistry and Physics, 14 (5), 481 (1986). DOI: 10.1016/0254-0584(86)90050-7
  72. O.F. Schirmer. J. Phys.: Condens. Matter, 18, R667 (2006). DOI: 10.1088/0953-8984/18/43/R01
  73. O.F. Schirmer, O. Thiemann, M. Wohlecke. J. Phys. Chem. Solids, 52 (1), 185 (1991). DOI: 10.1016/0022-3697(91)90064-7
  74. P. Reichenbach, T. Kampfe, A. Haub mann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovacs, Lukas M. Eng. Crystals, 8 (5), 214 (2018). DOI: 10.3390/cryst8050214
  75. L. Arizmendi, J.M. Cabrera, F. Agullo-Lopez. J. Phys. C: Solid State Phys., 17, 515 (1984). DOI: 10.1088/0022-3719/17/3/021
  76. P. Reichenbach, T. Kampfe, A. Thiessen, M. Schroder, A. Haub mann, T. Woike, L.M. Eng. J. Appl. Phys., 115 (21), 213509 (2014). DOI: 10.1063/1.4881496
  77. L. Arizmendi, J.M. Cabrera, F. Agullo-Lopez. Solid State Commun., 40 (5), 583 (1981). DOI: 10.1016/0038-1098(81)90579-2
  78. T. Kampfe, A. Haub mann, L.M. Eng. Phys. Rev. B, 93 (17), 174116 (2016). DOI: 10.1103/PhysRevB.93.174116
  79. S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, G. Corradi. J. Phys.: Condens. Matter, 31 (6), 065701 (2018). DOI: 10.1088/1361-648X/aaf4df
  80. M.H.J. Emond, M. Wiegel, G. Blasse, R. Feigelson. Mat. Res. Bull., 28 (10), 1025 (1993). DOI: 10.1016/0025-5408(93)90140-9
  81. M.V. Smirnov, N.V. Sidorov, M.N. Palatnikov, V.B. Pikulev. Trudy Kol?skogo naychnogo tsentra, 10 (3), 323 (2019) (in Russian)
  82. V.A. Golenishchev-Kutuzov, A.V. Golenishchev-Kutuzov, R.I. Kalimullin, A.V. Semennikov, V.A. Ulanov. Izvestiya RAN. Seriya fizicheskaya, 84 (12), 1754 (2020) (in Russian). DOI: 10.31857/S0367676520120212
  83. V.Yu. Yakovlev, E.V. Kabanova, T. Weber, P. Paufleur. FTT, 43 (8), 1520 (2001) (in Russian)
  84. I.Sh. Akhmadullin, V.A. Golenishchev-Kutuzov, S.A. Migachev. FTT, 40 (6), 1109 (1998) (in Russian)
  85. J. Koppitz, O.F. Schirmer, A.I. Kuznetsov. Europhys. Lett., 4 (9), 1055 (1987). DOI: 10.1209/0295-5075/4/9/017
  86. J.G. Murillo, G. Herrera, A. Vega-Rios, S. Flores-Gallardo, A. Duarte-Moller, J. Castillo-Torres. Optical materials, 62, 639 (2016). DOI: 10.1016/j.optmat.2016.10.059
  87. V.M. Fridkin. Segnetoelektriki --- poluprovodniki (Nauka, M., 1976) (in Russian)
  88. Yanl Li, Lili Li, Xiufeng Cheng, Xian Zhao. J. Phys. Chem. C, 121 (16), 8969 (2017). DOI: 10.1021/acs.jpcc.7b01274
  89. T. Moss, G. Burrell, B. Ellis. Poluprovodnikovaya optoelektronika, perevod s angliyskogo A.A. Gippiusa, A.N. Kovaleva, pod red. S.A. Medvedeva. (Mir, M., 1976) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru