Electron-phonon interaction in composites with colloidal quantum dots: a study by luminescence spectroscopy and Raman scattering
Karimullin K. R. 1,2,3, Arzhanov A. I. 1,2, Surovtsev N. V. 4, Naumov A. V. 1,2,3
1Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
2Moscow Pedagogical State University, Moscow, Russia
3Lebedev Physical Institute, Russian Academy of Sciences, Branch in Troitsk, Troitsk, Moscow, Russia
4Institute of Automation and Electrometry, Siberian BranchRussian Academy of Sciences, Novosibirsk, Russia
Email: kamil@isan.troitsk.ru, arzhanov.artyom@gmail.com, saa@iae.nsk.su, naumov@isan.troitsk.ru

PDF
The temperature-dependent luminescence spectra were analyzed to determine the parameters of the electron-phonon interaction (Huang-Rhys factor and the average phonon energy) for nanocomposites with colloidal CdSe/CdS/ZnS quantum dots (deposited on the surface of a glass substrate and embedded in a thin polymer film of polyisobutylene, and in a frozen colloidal solution in toluene). The measured values of the parameters are analyzed in comparison with model calculations and data obtained using the low-frequency Raman spectroscopy. It is found that in the case of a vitrified colloidal solution of quantum dots in toluene, the matrix effect leads to a noticeable change in the parameters of the electron-phonon interaction. Keywords: quantum dot, nanocomposite, polymer, phonon, electron-phonon interaction.
  1. A.M. Majorova. Fotonika (in Russian), 12, 134 (2018). DOI: 10.22184/1993-7296.2018.69.1.134.142
  2. A.S. Matsukovich, S.V. Gaponenko, O.Y. Nalivaiko, K.V. Chizh. J. Appl. Spectr., 86(1), 72 (2019). DOI: 10.1007/s10812-019-00783-8
  3. K.R. Karimullin, A.V. Naumov. J. Lumin., 152, 15 (2014). DOI: 10.1016/j.jlumin.2014.01.069
  4. A. Bobrovsky, V. Shibaev, S. Abramchuk, G. Elyashevitch, P. Samokhvalov, V. Oleinikov, K. Mochalov. Eur. Polymer. J., 82, 93 (2016). DOI: 10.1016/j.eurpolymj.2016.06.017
  5. K.A. Magaryan, M.A. Mikhailov, K.R. Karimullin, M.V. Knyazev, I.Y. Eremchev, A.V. Naumov, I.A. Vasilieva, G.V. Klimusheva. J. Lumin., 169, 799 (2016). DOI: 10.1016/j.jlumin.2015.08.064
  6. M.S. Smirnov, O.V. Ovchinnikov, A.I. Zvyagin, G.K. Uskov, I.V. Taidakov, S.A. Ambrozevich, A.G. Vitukhnovskii. Opt. Spectr., 125 (2), 249 (2018). DOI: 10.1134/S0030400X18080210
  7. [S.B. Brichkin, V.F. Razumov. Russ. Chem. Rev., 85, 1297 (2016). DOI: 10.1070/RCR4656
  8. R.Kh. Gainutdinov, L.Ya. Nabieva, A.I. Garifullin, A. Shirdelkhavar, A.A. Mutygullina, M.Kh. Salakhov. Pis'ma v ZhETF, 114 (4), 221 (2021) (in Russian). DOI: 10.31857/S1234567821160047
  9. V.B. Kapustianyk, S.I. Semak, S.B. Bilchenko, Y.I. Eliyashevskyy, Y.V. Chorniy, P.Y. Demchenko. J. Appl. Spectr., 86 (4), 590 (2019). DOI: 10.1007/s10812-019-00864-8
  10. I.S. Ezubchenko, A.S. Trifonov, I.S. Osad'ko, I.G. Prokhorova, O.V. Snigirev, E.S. Soldatov. Bull. RAS. Phys., 76 (12), 1310 (2012). DOI: 10.3103/S1062873812120088
  11. I.S. Osad?ko. Izv. RAN. Ser. fiz., 83 (12), 1594 (2019) (in Russian). DOI: 10.1134/S0367676519120184
  12. A.I. Arzhanov, K.R. Karimullin, A.V. Naumov. Bull. Lebedev Phys. Inst., 45, 91 (2018). DOI: 10.3103/S1068335618030077
  13. K.R. Karimullin, A.I. Arzhanov, A.V. Naumov. Bull. RAS. Phys., 82 (11), 1478 (2018). DOI: c10.3103/S1062873818080191
  14. K.R. Karimullin, A.I. Arzhanov, I.Yu. Eremchev, B.A. Kulnitskiy, N.V. Surovtsev, A.V. Naumov. Laser Phys., 29 (12), 124009 (2019). DOI: 10.1088/1555-6611/ab4bdb
  15. K.A. Magaryan, K.R. Karimullin, I.A. Vasil'eva, A.V. Naumov. Opt. Spectr., 126 (1), 41 (2019). DOI: 10.1134/S0030400X19010107
  16. A.G. Milekhin, L.L. Sveshnikova, T.A. Duda, N.V. Surovtsev, S.V. Adichtchev, D.R.T. Zahn. JETP Lett., 88 (12), 799 (2008). DOI: 10.1134/S0021364008240053
  17. K.R. Karimullin, M.V. Knyazev, A.I. Arzhanov, L.A. Nurtdinova, A.V. Naumov. J. Phys. Conf. Ser., 859, 012010 (2017). DOI: 10.1088/1742-6596/859/1/012010
  18. K.R. Karimullin, A.I. Arzhanov, A.V. Naumov. Bull. RAS. Phys., 81 (12), 1396 (2017). DOI: 10.3103/S1062873817120164
  19. Y.P. Varshni. Physica, 34 (1), 149 (1967). DOI: 10.1016/0031-8914(67)90062-6
  20. I.A. Vavi nshtevi n, A.F. Zatsepin, V.S. Kortov. Phys. Solid State, 41 (6), 905 (1999). DOI: 10.1134/1.1130901
  21. K.P. O'Donnell, X. Chen. Appl. Phys. Lett., 58 (25), 2924 (1991). DOI: 10.1063/1.104723
  22. A. Al Salman, A. Tortschanoff, M.B. Mohamed, D. Tonti, F. van Mourik, M. Chergui. Appl. Phys. Lett., 90, 093104 (2007). DOI: 10.1063/1.2696687
  23. A.E. Eskova, A.I. Arzhanov, K.A. Magaryan, K.R. Karimullin, A.V. Naumov. Bull. RAS. Phys., 84 (1), 40 (2020). DOI: 10.3103/S1062873820010116
  24. S. Baskoutas, A.F. Terzis. J. Appl. Phys., 99 (1), 013708 (2006). DOI: 10.1063/1.2158502
  25. N.V. Surovtsev. Optoelectron. Instrum. Data Process., 53, 250 (2017). DOI: 10.3103/S8756699017030086
  26. D.V. Leonov, S.V. Adichtchev, S.A. Dzuba, N.V. Surovtsev. Phys. Rev. E, 99, 022417 (2019). DOI: 10.1103/PhysRevE.99.022417
  27. R.M. Abozaid, Z.Z. Lazarevic, I. Radaviv, M. Gilic, D. Sevic, M.S. Rabasovic, V. Radojevic. Opt. Mater., 92, 405 (2019). DOI: 10.1016/j.optmat.2019.05.012
  28. A.J. Mork, E.M.Y. Lee, N.S. Dahod, A.P. Willard, W.A. Tisdale. J. Phys. Chem. Lett., 7, 4213 (2016). DOI: 10.1021/acs.jpclett.6b01659.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru