Electron-phonon interaction in composites with colloidal quantum dots: a study by luminescence spectroscopy and Raman scattering
Karimullin K. R.
1,2,3, Arzhanov A. I.
1,2, Surovtsev N. V.
4, Naumov A. V.
1,2,31Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
2Moscow Pedagogical State University, Moscow, Russia
3Lebedev Physical Institute, Russian Academy of Sciences, Branch in Troitsk, Troitsk, Moscow, Russia
4Institute of Automation and Electrometry, Siberian BranchRussian Academy of Sciences, Novosibirsk, Russia
Email: kamil@isan.troitsk.ru, arzhanov.artyom@gmail.com, saa@iae.nsk.su, naumov@isan.troitsk.ru
The temperature-dependent luminescence spectra were analyzed to determine the parameters of the electron-phonon interaction (Huang-Rhys factor and the average phonon energy) for nanocomposites with colloidal CdSe/CdS/ZnS quantum dots (deposited on the surface of a glass substrate and embedded in a thin polymer film of polyisobutylene, and in a frozen colloidal solution in toluene). The measured values of the parameters are analyzed in comparison with model calculations and data obtained using the low-frequency Raman spectroscopy. It is found that in the case of a vitrified colloidal solution of quantum dots in toluene, the matrix effect leads to a noticeable change in the parameters of the electron-phonon interaction. Keywords: quantum dot, nanocomposite, polymer, phonon, electron-phonon interaction.
- A.M. Majorova. Fotonika (in Russian), 12, 134 (2018). DOI: 10.22184/1993-7296.2018.69.1.134.142
- A.S. Matsukovich, S.V. Gaponenko, O.Y. Nalivaiko, K.V. Chizh. J. Appl. Spectr., 86(1), 72 (2019). DOI: 10.1007/s10812-019-00783-8
- K.R. Karimullin, A.V. Naumov. J. Lumin., 152, 15 (2014). DOI: 10.1016/j.jlumin.2014.01.069
- A. Bobrovsky, V. Shibaev, S. Abramchuk, G. Elyashevitch, P. Samokhvalov, V. Oleinikov, K. Mochalov. Eur. Polymer. J., 82, 93 (2016). DOI: 10.1016/j.eurpolymj.2016.06.017
- K.A. Magaryan, M.A. Mikhailov, K.R. Karimullin, M.V. Knyazev, I.Y. Eremchev, A.V. Naumov, I.A. Vasilieva, G.V. Klimusheva. J. Lumin., 169, 799 (2016). DOI: 10.1016/j.jlumin.2015.08.064
- M.S. Smirnov, O.V. Ovchinnikov, A.I. Zvyagin, G.K. Uskov, I.V. Taidakov, S.A. Ambrozevich, A.G. Vitukhnovskii. Opt. Spectr., 125 (2), 249 (2018). DOI: 10.1134/S0030400X18080210
- [S.B. Brichkin, V.F. Razumov. Russ. Chem. Rev., 85, 1297 (2016). DOI: 10.1070/RCR4656
- R.Kh. Gainutdinov, L.Ya. Nabieva, A.I. Garifullin, A. Shirdelkhavar, A.A. Mutygullina, M.Kh. Salakhov. Pis'ma v ZhETF, 114 (4), 221 (2021) (in Russian). DOI: 10.31857/S1234567821160047
- V.B. Kapustianyk, S.I. Semak, S.B. Bilchenko, Y.I. Eliyashevskyy, Y.V. Chorniy, P.Y. Demchenko. J. Appl. Spectr., 86 (4), 590 (2019). DOI: 10.1007/s10812-019-00864-8
- I.S. Ezubchenko, A.S. Trifonov, I.S. Osad'ko, I.G. Prokhorova, O.V. Snigirev, E.S. Soldatov. Bull. RAS. Phys., 76 (12), 1310 (2012). DOI: 10.3103/S1062873812120088
- I.S. Osad?ko. Izv. RAN. Ser. fiz., 83 (12), 1594 (2019) (in Russian). DOI: 10.1134/S0367676519120184
- A.I. Arzhanov, K.R. Karimullin, A.V. Naumov. Bull. Lebedev Phys. Inst., 45, 91 (2018). DOI: 10.3103/S1068335618030077
- K.R. Karimullin, A.I. Arzhanov, A.V. Naumov. Bull. RAS. Phys., 82 (11), 1478 (2018). DOI: c10.3103/S1062873818080191
- K.R. Karimullin, A.I. Arzhanov, I.Yu. Eremchev, B.A. Kulnitskiy, N.V. Surovtsev, A.V. Naumov. Laser Phys., 29 (12), 124009 (2019). DOI: 10.1088/1555-6611/ab4bdb
- K.A. Magaryan, K.R. Karimullin, I.A. Vasil'eva, A.V. Naumov. Opt. Spectr., 126 (1), 41 (2019). DOI: 10.1134/S0030400X19010107
- A.G. Milekhin, L.L. Sveshnikova, T.A. Duda, N.V. Surovtsev, S.V. Adichtchev, D.R.T. Zahn. JETP Lett., 88 (12), 799 (2008). DOI: 10.1134/S0021364008240053
- K.R. Karimullin, M.V. Knyazev, A.I. Arzhanov, L.A. Nurtdinova, A.V. Naumov. J. Phys. Conf. Ser., 859, 012010 (2017). DOI: 10.1088/1742-6596/859/1/012010
- K.R. Karimullin, A.I. Arzhanov, A.V. Naumov. Bull. RAS. Phys., 81 (12), 1396 (2017). DOI: 10.3103/S1062873817120164
- Y.P. Varshni. Physica, 34 (1), 149 (1967). DOI: 10.1016/0031-8914(67)90062-6
- I.A. Vavi nshtevi n, A.F. Zatsepin, V.S. Kortov. Phys. Solid State, 41 (6), 905 (1999). DOI: 10.1134/1.1130901
- K.P. O'Donnell, X. Chen. Appl. Phys. Lett., 58 (25), 2924 (1991). DOI: 10.1063/1.104723
- A. Al Salman, A. Tortschanoff, M.B. Mohamed, D. Tonti, F. van Mourik, M. Chergui. Appl. Phys. Lett., 90, 093104 (2007). DOI: 10.1063/1.2696687
- A.E. Eskova, A.I. Arzhanov, K.A. Magaryan, K.R. Karimullin, A.V. Naumov. Bull. RAS. Phys., 84 (1), 40 (2020). DOI: 10.3103/S1062873820010116
- S. Baskoutas, A.F. Terzis. J. Appl. Phys., 99 (1), 013708 (2006). DOI: 10.1063/1.2158502
- N.V. Surovtsev. Optoelectron. Instrum. Data Process., 53, 250 (2017). DOI: 10.3103/S8756699017030086
- D.V. Leonov, S.V. Adichtchev, S.A. Dzuba, N.V. Surovtsev. Phys. Rev. E, 99, 022417 (2019). DOI: 10.1103/PhysRevE.99.022417
- R.M. Abozaid, Z.Z. Lazarevic, I. Radaviv, M. Gilic, D. Sevic, M.S. Rabasovic, V. Radojevic. Opt. Mater., 92, 405 (2019). DOI: 10.1016/j.optmat.2019.05.012
- A.J. Mork, E.M.Y. Lee, N.S. Dahod, A.P. Willard, W.A. Tisdale. J. Phys. Chem. Lett., 7, 4213 (2016). DOI: 10.1021/acs.jpclett.6b01659.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.